• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 1
    Jan.  2022
    Turn off MathJax
    Article Contents
    Qiu Zhiwei, Li Zhanke, Yuan Zhongzheng, 2022. Microstructure and Trace Elements of Pyrite from Sanshandao Gold Deposit in Jiaodong District: Implications for Mechanism of Gold Enrichment. Earth Science, 47(1): 290-308. doi: 10.3799/dqkx.2021.045
    Citation: Qiu Zhiwei, Li Zhanke, Yuan Zhongzheng, 2022. Microstructure and Trace Elements of Pyrite from Sanshandao Gold Deposit in Jiaodong District: Implications for Mechanism of Gold Enrichment. Earth Science, 47(1): 290-308. doi: 10.3799/dqkx.2021.045

    Microstructure and Trace Elements of Pyrite from Sanshandao Gold Deposit in Jiaodong District: Implications for Mechanism of Gold Enrichment

    doi: 10.3799/dqkx.2021.045
    • Received Date: 2020-12-05
      Available Online: 2022-02-11
    • Publish Date: 2022-01-20
    • The Sanshandao gold deposit, located in the northwest of Jiaodong district, is a super-large altered-rock type gold deposit. The lack of detailed studies of mineralogy and element geochemistry in this deposit limits the understanding of Au enrichment mechanism and process. Based on field work and mineralogical observation in the deposit, the Au mineralization is divided into four stages: the quartz-sericite-pyrite stage (Ⅰ), quartz-gold-pyrite stage (Ⅱ), quartz-gold-polymetallic sulfide stage (Ⅲ) and carbonate-quartz stage (Ⅳ). The main gold-bearing mineral is pyrite. Py1 in stage Ⅰ is characterized by euhedral grains with no deformation and low contents of As and Au. In stage Ⅱ, the Py2 can be divided into two sub-generations: coarse Py2a with no deformation and Py2b with massive plastic and brittle deformation. The contents of Au and As are high in Py2a and low in Py2b.In stage Ⅲ, the Py3 includes fine-grained euhedral Py3a coexisting with quartz and Py3b coexisting with polymetallic sulfide, both with weak deformation and medium Au and As contents. In-situ trace element analysis of pyrite indicates Co, Ni and Ag entering pyrite lattice by forming solid solution, whereas Pb, Zn and Cu mainly presenting as sulfide inclusions. The main occurrence state of gold is visible Au that occurs in the cracks and intergranular space of pyrite as electrum. The invisible Au in pyrite is lattice gold, and its enrichment is closely related to As. To be specific, As- replacing S- entered into pyrite, resulting in lattice distortion of pyrite, which prompted the Au+ into the pyrite lattice. The decompression boiling of ore-forming fluids in stage Ⅱ resulted in Au precipitation and intergrowth with Py2a as visible inclusions and intergranular gold. The plastic deformation of Py2b in stage Ⅱ induced by syn-activation of ore-controlling fault, such as dislocation creep, lattice rotation, promoted the formation of intracrystalline "fast pathways", and further remobilized invisible Au through intragrain diffusion or fluid-mediated liberation. The remobilized Au re-concentrated as visible gold in microfractures and boundaries of pyrite grains, which contributes to the formation of high-grade gold ores in Sanshandao.

       

    • loading
    • Barrie C. D., Boyle A. P., Prior D. J. . 2007. An Analysis of the Microstructures Developed in Experimentally Deformed Polycrystalline Pyrite and Minor Sulphide Phases Using Electron Backscatter Diffraction. Journal of Structural Geology, 29(9): 1494-1511. https://doi.org/10.1016/j.jsg.2007.05.005
      Barrie C. D., Boyle A. P., Salter M. . 2009. How Low can You Go?-Extending Downwards the Limits of Plastic Deformation in Pyrite. Mineralogical Magazine, 73(6): 895-913. https://doi.org/10.1180/minmag.2009.073.6.895
      Belousov I., Large R. R., Meffre S., et al. 2016. Pyrite Compositions from VHMS and Orogenic Au Deposits in the Yilgarn Craton, Western Australia: Implications for Gold and Copper Exploration. Ore Geology Reviews, 79: 474-499. https://doi.org/10.1016/j.oregeorev.2016.04.020
      Bi S.J., Li Z.K., Tang K.F., et al. 2016. LA-ICP-MS In Situ Trace Element Analysis of Pyrite from Dongtongyu Gold Deposit and Its Metallogenic Significance, Xiaoqinling Gold District. Earth Science, 41(7): 1121-1140 (in Chinese with English abstract).
      Boyle A. P., Prior D. J., Banham M. H., et al. 1998. Plastic Deformation of Metamorphic Pyrite: New Evidence from Electron-Backscatter Diffraction and Forescatter Orientation-Contrast Imaging. Mineralium Deposita, 34(1): 71-81. https://doi.org/10.1007/s001260050186
      Bralia A., Sabatini G., Troja F. . 1979. A Revaluation of the Co/Ni Ratio in Pyrite as Geochemical Tool in Ore Genesis Problems. Mineralium Deposita, 14(3): 353-374. https://doi.org/10.1007/bf00206365
      Chen Y.J., Pirajno F., Lai Y., et al. 2004. Metallogenic Time and Tectonic Setting of the Jiaodong Gold Province, Eastern China. Acta Petrologica Sinica, 20(4): 907-922 (in Chinese with English abstract).
      Chen Y. J., Pirajno F., Qi J. P. . 2005. Origin of Gold Metallogeny and Sources of Ore-Forming Fluids, Jiaodong Province, Eastern China. International Geology Review, 47(5): 530-549. https://doi.org/10.2747/0020-6814.47.5.530
      Cook N. J., Ciobanu C. L., Mao J. W. . 2009. Textural Control on Gold Distribution in As-Free Pyrite from the Dongping, Huangtuliang and Hougou Gold Deposits, North China Craton (Hebei Province, China). Chemical Geology, 264(1-4): 101-121. https://doi.org/10.1016/j.chemgeo.2009.02.020
      Deditius A. P., Reich M., Kesler S. E., et al. 2014. The Coupled Geochemistry of Au and As in Pyrite from Hydrothermal Ore Deposits. Geochimica et Cosmochimica Acta, 140: 644-670. https://doi.org/10.1016/j.gca.2014.05.045
      Deditius A. P., Utsunomiya S., Reich M., et al. 2011. Trace Metal Nanoparticles in Pyrite. Ore Geology Reviews, 42(1): 32-46. https://doi.org/10.1016/j.oregeorev.2011.03.003
      Deng J., Chen Y.M., Liu Q., et al. 2010. The Gold Metallogenic System and Mineral Resources Exploration of Sanshandao Fault Zone, Shandong Province. Geological Publishing House, Beijing (in Chinese).
      Deng J., Yang L. Q., Groves D. I., et al. 2020. An Integrated Mineral System Model for the Gold Deposits of the Giant Jiaodong Province, Eastern China. Earth- Science Reviews, 208: 103274. https://doi.org/10.1016/j.earscirev.2020.103274
      Deng J., Yang L. Q., Li R. H., et al. 2019. Regional Structural Control on the Distribution of World-Class Gold Deposits: An Overview from the Giant Jiaodong Gold Province, China. Geological Journal, 54(1): 378-391. https://doi.org/10.1002/gj.3186
      Ding Z.J., Sun F.Y., Liu F.L., et al. 2015. Mesozoic Geodynamic Evolution and Metallogenic Series of Major Metal Deposits in Jiaodong Peninsula, China. Acta Petrologica Sinica, 31(10): 3045-3080 (in Chinese with English abstract).
      Fan H.R., Li X.H., Zuo Y.B., et al. 2018. In-Situ LA-(MC)-ICPMS and (Nano) SIMS Trace Elements and Sulfur Isotope Analyses on Sulfides and Application to Confine Metallogenic Process of Ore Deposit. Acta Petrologica Sinica, 34(12): 3479-3496 (in Chinese with English abstract).
      Fan H. R., Zhai M. G., Xie Y. H., et al. 2003. Ore-Forming Fluids Associated with Granite-Hosted Gold Mineralization at the Sanshandao Deposit, Jiaodong Gold Province, China. Mineralium Deposita, 38(6): 739-750. https://doi.org/10.1007/s00126-003-0368-x
      Fougerouse D., Micklethwaite S., Tomkins A. G., et al. 2016. Gold Remobilisation and Formation of High Grade Ore Shoots Driven by Dissolution-Reprecipitation Replacement and Ni Substitution into Auriferous Arsenopyrite. Geochimica et Cosmochimica Acta, 178: 143-159. https://doi.org/10.1016/j.gca.2016.01.040
      Gao J. F., Zhou M. F., Lightfoot P. C., et al. 2013. Sulfide Saturation and Magma Emplacement in the Formation of the Permian Huangshandong Ni-Cu Sulfide Deposit, Xinjiang, Northwestern China. Economic Geology, 108(8): 1833-1848. https://doi.org/10.2113/econgeo.108.8.1833 doi: 10.1016/j.gca.2016.01.040
      Groves D. I., Santosh M. . 2016. The Giant Jiaodong Gold Province: The Key to a Unified Model for Orogenic Gold Deposits? Geoscience Frontiers, 7(3): 409-417. https://doi.org/10.1016/j.gsf.2015.08.002
      Gudmundsson A. . 2001. Fluid Overpressure and Flow in Fault Zones: Field Measurements and Models. Tectonophysics, 336(1-4): 183-197. https://doi.org/10.1016/s0040-1951(01)00101-9
      Gui F. . 2014. Mineralization Enrichment Regularity and the Genesis Discussed of Sanshaodao Gold Deposit, Shandong Province Laizhou (Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      Guo C.Y. . 2009. Tectonic Setting, Magmatic Sequence and Fluid of Gold Metallogenic System of the Sanshandao-Cangshang Fault in Jiaodong, China (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Hu F. F., Fan H. R., Jiang X. H., et al. 2013. Fluid Inclusions at Different Depths in the Sanshandao Gold Deposit, Jiaodong Peninsula, China. Geofluids, 13(4): 528-541. https://doi.org/10.1111/gfl.12065
      Li R. H., Wang X. Q., Yang L. Q., et al. 2020. The Characteristic of Microstructural Deformation of Gold Bearing Pyrite in Jiaodong: The Links between Nanoscale Gold Enrichment and Crystal Distortion. Ore Geology Reviews, 122: 103495. https://doi.org/10.1016/j.oregeorev.2020.103495
      Li R.H., Yang L.Q., Yun M.H., et al. 2019. Genetic Relationship between Micro-Deformation and Gold Enrichment of Gold-Bearing Pyrite in Jiaodong: Constraint from EBSD Fabrics and Geochemistry. Mineral Deposits, 38(2): 303-318 (in Chinese with English abstract).
      Li S. R., Santosh M. . 2017. Geodynamics of Heterogeneous Gold Mineralization in the North China Craton and Its Relationship to Lithospheric Destruction. Gondwana Research, 50: 267-292. https://doi.org/10.1016/j.gr.2017.05.007
      Li X. H., Fan H. R., Yang K. F., et al. 2018. Pyrite Textures and Compositions from the Zhuangzi Au Deposit, Southeastern North China Craton: Implication for Ore-Forming Processes. Contributions to Mineralogy and Petrology, 173(9): 1-20. https://doi.org/10.1007/s00410-018-1501-2
      Li Z.K., Li J.W., Chen L., et al. 2010. Occurrence of Silver in the Shagou Ag-Pb-Zn Deposit, Luoning County, Henan Province: Implications for Mechanism of Silver Enrichment. Earth Science, 35(4): 621-636 (in Chinese with English abstract).
      Li Z. K., Li J. W., Cooke D. R., et al. 2016. Textures, Trace Elements, and Pb Isotopes of Sulfides from the Haopinggou Vein Deposit, Southern North China Craton: Implications for Discrete Au and Ag-Pb-Zn Mineralization. Contributions to Mineralogy and Petrology, 171(12): 1-26. https://doi.org/10.1007/s00410-016-1309-x
      Lin Z.W., Zhao X.F., Xiong L., et al. 2019. In-Situ Trace Element Analysis Characteristics of Pyrite in Sanshandao Gold Deposit in Jiaodong Peninsula: Implications for Ore Genesis. Advances in Earth Science, 34(4): 399-413 (in Chinese with English abstract).
      Liu L.L. . 2017. Characteristic of Ore-Controlling Structure and Distribution of Mineralization Intensity in the Sanshandao Gold Deposit, Jiaodong Peninsula, China (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Liu Y. S., Hu Z. C., Gao S., et al. 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      Liu Y. Z., Yang L. Q., Wang S. R., et al. 2019. Origin and Evolution of Ore-Forming Fluid and Gold-Deposition Processes at the Sanshandao Gold Deposit, Jiaodong Peninsula, Eastern China. Minerals, 189(9): 1-25. https://doi.org/10.3390/min9030189
      Luo D. . 2014. Evolution of Ore-Forming Fluids of Sanshandao Gold Deposit, Jiaodong Peninsula, Eastern China (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Qiu Y. M., Groves D. I., McNaughton N. J., et al. 2002. Nature, Age, and Tectonic Setting of Granitoid-Hosted, Orogenic Gold Deposits of the Jiaodong Peninsula, Eastern North China Craton, China. Mineralium Deposita, 37(3-4): 283-305. https://doi.org/10.1007/s00126-001-0238-3
      Reddy S. M., Hough R. M. . 2013. Microstructural Evolution and Trace Element Mobility in Witwatersrand Pyrite. Contributions to Mineralogy and Petrology, 166(5): 1269-1284. https://doi.org/10.1007/s00410-013-0925-y
      Reich M., Kesler S. E., Utsunomiya S., et al. 2005. Solubility of Gold in Arsenian Pyrite. Geochimica et Cosmochimica Acta, 69(11): 2781-2796. https://doi.org/10.1016/j.gca.2005.01.011
      Seward T. M. . 1973. Thio Complexes of Gold and the Transport of Gold in Hydrothermal Ore Solutions. Geochimica et Cosmochimica Acta, 37(3): 379-399. https://doi.org/10.1016/0016-7037(73)90207-x
      Song M.C., Cui S.X., Yi P.H., et al. 2010. Jiaoxibei Gold Ore-Concentrated Zone Deep Large-Superlarge Gold Deposits Prospection and Metallogenic Model. Geological Publishing House, Beijing (in Chinese).
      Song M.C., Lin S.Y., Yang L.Q., et al. 2020. Metallogenic Model of Jiaodong Peninsula Gold Deposits. Mineral Deposits, 39(2): 215-236 (in Chinese with English abstract).
      Song M.C., Song Y.X., Ding Z.J., et al. 2018. Jiaodong Gold Deposits: Essential Characteristics and Major Controversy. Gold Science and Technology, 26(4): 406-422 (in Chinese with English abstract).
      Song M.C., Zhang J.J., Zhang P.J., et al. 2015. Discovery and Tectonic-Magmatic Background of Superlarge Gold Deposit in Offshore of Northern Sanshandao, Shandong Peninsula, China. Acta Geologica Sinica, 89(2): 365-383 (in Chinese with English abstract).
      Tang H. Y., Zheng J. P., Yu C. M., et al. 2014. Multistage Crust-Mantle Interactions during the Destruction of the North China Craton: Age and Composition of the Early Cretaceous Intrusions in the Jiaodong Peninsula. Lithos, 190-191: 52-70. https://doi.org/10.1016/j.lithos.2013.12.002
      Wang Q.F., Deng J., Zhao H.S., et al. 2019. Review on Orogenic Gold Deposits. Earth Science, 44(6): 2155-2186 (in Chinese with English abstract).
      Wang X., Wang Z. C., Cheng H., et al. 2020. Early Cretaceous Lamprophyre Dyke Swarms in Jiaodong Peninsula, Eastern North China Craton, and Implications for Mantle Metasomatism Related to Subduction. Lithos, 368-369: 105593. https://doi.org/10.1016/j.lithos.2020.105593
      Wu M. L., Zhao G. C., Sun M., et al. 2014. Zircon U-Pb Geochronology and Hf Isotopes of Major Lithologies from the Jiaodong Terrane: Implications for the Crustal Evolution of the Eastern Block of the North China Craton. Lithos, 190-191: 71-84. https://doi.org/10.1016/j.lithos.2013.12.004
      Wu X. D., Zhu G., Yin H., et al. 2020. Origin of Low-Angle Ductile/Brittle Detachments: Examples from the Cretaceous Linglong Metamorphic Core Complex in Eastern China. Tectonics, 39(9): e2020TC006132. https://doi.org/10.1029/2020tc006132
      Wu Y. F., Li J. W., Evans K., et al. 2018. Ore- Forming Processes of the Daqiao Epizonal Orogenic Gold Deposit, West Qinling Orogen, China: Constraints from Textures, Trace Elements, and Sulfur Isotopes of Pyrite and Marcasite, and Raman Spectroscopy of Carbonaceous Material. Economic Geology, 113(5): 1093-1132. https://doi.org/10.5382/econgeo.2018.4583
      Xu W. G., Fan H. R., Yang K. F., et al. 2016. Exhaustive Gold Mineralizing Processes of the Sanshandao Gold Deposit, Jiaodong Peninsula, Eastern China: Displayed by Hydrothermal Alteration Modeling. Journal of Asian Earth Sciences, 129: 152-169. https://doi.org/10.1016/j.jseaes.2016.08.008
      Yang K.F., Zhu J.T., Cheng S.H., et al. 2017. Structural Controls of the Sanshandao Gold Deposit in the Northwestern Jiaodong District, China. Geotectonica et Metallogenia, 41(2): 272-282 (in Chinese with English abstract).
      Yang L.Q., Deng J., Wang Z.L., et al. 2014. Mesozoic Gold Metallogenic System of the Jiaodong Gold Province, Eastern China. Acta Petrologica Sinica, 30(9): 2447-2467 (in Chinese with English abstract).
      Yang L. Q., Dilek Y., Wang Z. L., et al. 2018. Late Jurassic, High Ba-Sr Linglong Granites in the Jiaodong Peninsula, East China: Lower Crustal Melting Products in the Eastern North China Craton. Geological Magazine, 155(5): 1040-1062. https://doi.org/10.1017/s0016756816001230
      Yang M. Z., Li J. W., Zhao X. F., et al. 2019. Electron Back-Scattered Diffraction and LA-ICP-MS Analysis of Pyrite from the Dahu Lodegold Deposit, Southern North China Craton: Insights into Geochemistry and Distribution of Trace Element Connection to Microstructure of Pyrite. Ore Geology Reviews, 115: 103164. https://doi.org/10.1016/j.oregeorev.2019.103164
      Yang Q. Y., Santosh M., Shen J. F., et al. 2014. Juvenile vs. Recycled Crust in NE China: Zircon U-Pb Geochronology, Hf Isotope and an Integrated Model for Mesozoic Gold Mineralization in the Jiaodong Peninsula. Gondwana Research, 25(4): 1445-1468. https://doi.org/10.1016/j.gr.2013.06.003
      Zhang L., Li G.W., Zheng X.L., et al. 2016. 40Ar/39Ar and Fission-Track Dating Constraints on the Tectonothermal History of the World-Class Sanshandao Gold Deposit, Jiaodong Peninsula, Eastern China. Acta Petrologica Sinica, 32(8): 2465-2476 (in Chinese with English abstract).
      Zhao H. X., Frimmel H. E., Jiang S. Y., et al. 2011. LA-ICP-MS Trace Element Analysis of Pyrite from the Xiaoqinling Gold District, China: Implications for Ore Genesis. Ore Geology Reviews, 43(1): 142-153. https://doi.org/10.1016/j.oregeorev.2011.07.006
      Zhao R., Wang Q. F., Liu X. F., et al. 2016. Architecture of the Sulu Crustal Suture between the North China Craton and Yangtze Craton: Constraints from Mesozoic Granitoids. Lithos, 266-267: 348-361. https://doi.org/10.1016/j.lithos.2016.10.018
      Zhu R.X., Fan H.R., Li J.W., et al. 2015. Decratonic Gold Deposits. Scientia Sinica Terrae, 45(8): 1153-1168 (in Chinese). doi: 10.1360/zd2015-45-8-1153
      Zhu Z.X., Zhao X.F., Lin Z.W., et al. 2020. In Situ Trace Elements and Sulfur Isotope Analysis of Pyrite from Jinchiling Gold Deposit in the Jiaodong Region: Implications for Ore Genesis. Earth Science, 45(3): 945-959 (in Chinese with English abstract).
      毕诗健, 李占轲, 唐克非, 等. 2016. 小秦岭东桐峪金矿床黄铁矿LA-ICP-MS微量元素特征及其成矿意义. 地球科学, 41(7): 1121-1140. doi: 10.3799/dqkx.2016.093
      陈衍景, Pirajno F., 赖勇, 等. 2004. 胶东矿集区大规模成矿时间和构造环境. 岩石学报, 20(4): 907-922. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200404013.htm
      邓军, 陈玉民, 刘钦, 等. 2010. 胶东三山岛断裂带金成矿系统与资源勘查. 北京: 地质出版社.
      丁正江, 孙丰月, 刘福来, 等. 2015. 胶东中生代动力学演化及主要金属矿床成矿系列. 岩石学报, 31(10): 3045-3080. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201510011.htm
      范宏瑞, 李兴辉, 左亚彬, 等. 2018. LA-(MC)-ICPMS和(Nano)SIMS硫化物微量元素和硫同位素原位分析与矿床形成的精细过程. 岩石学报, 34(12): 3479-3496. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201812002.htm
      桂飞. 2014. 山东莱州三山岛金矿床矿化富集规律及矿床成因探讨(硕士学位论文). 长春: 吉林大学.
      郭春影. 2009. 胶东三山岛‒仓上金矿带构造‒岩浆‒流体金成矿系统(博士学位论文). 北京: 中国地质大学.
      李瑞红, 杨立强, 恽孟河, 等. 2019. 胶东黄铁矿显微构造变形与金富集关系: 黄铁矿EBSD组构和地球化学约束. 矿床地质, 38(2): 303-318. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201902006.htm
      李占轲, 李建威, 陈蕾, 等. 2010. 河南洛宁沙沟Ag-Pb-Zn矿床银的赋存状态及成矿机理. 地球科学, 35(4): 621-636. doi: 10.3799/dqkx.2010.077
      林祖苇, 赵新福, 熊乐, 等. 2019. 胶东三山岛金矿床黄铁矿原位微区微量元素特征及对矿床成因的指示. 地球科学进展, 34(4): 399-413. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201904009.htm
      刘龙龙. 2017. 胶东三山岛金矿控矿构造特征和矿化强度分布(硕士学位论文). 北京: 中国地质大学.
      罗栋. 2014. 胶东三山岛金矿床成矿流体演化(硕士学位论文). 北京: 中国地质大学.
      宋明春, 崔书学, 伊丕厚, 等. 2010. 胶西北金矿集中区深部大型‒超大型金矿找矿与成矿模式. 北京: 地质出版社.
      宋明春, 林少一, 杨立强, 等. 2020. 胶东金矿成矿模式. 矿床地质, 39(2): 215-236. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202002002.htm
      宋明春, 宋英昕, 丁正江, 等. 2018. 胶东金矿床: 基本特征和主要争议. 黄金科学技术, 26(4): 406-422. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ201804006.htm
      宋明春, 张军进, 张丕建, 等. 2015. 胶东三山岛北部海域超大型金矿床的发现及其构造‒岩浆背景. 地质学报, 89(2): 365-383. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201502012.htm
      王庆飞, 邓军, 赵鹤森, 等. 2019. 造山型金矿研究进展: 兼论中国造山型金成矿作用. 地球科学, 44(6): 2155-2186. doi: 10.3799/dqkx.2019.105
      杨奎锋, 朱继托, 程胜红, 等. 2017. 胶东三山岛金矿构造控矿规律研究. 大地构造与成矿学, 41(2): 272-282. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201702004.htm
      杨立强, 邓军, 王中亮, 等. 2014. 胶东中生代金成矿系统. 岩石学报, 30(9): 2447-2467. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201409001.htm
      张良, 李广伟, 郑小礼, 等. 2016. 胶东三山岛金矿床构造‒热历史: 40Ar/39Ar和裂变径迹年代学制约. 岩石学报, 32(8): 2465-2476. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201608016.htm
      朱日祥, 范宏瑞, 李建威, 等. 2015. 克拉通破坏型金矿. 中国科学: 地球科学, 45(8): 1153-1168. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201508006.htm
      朱照先, 赵新福, 林祖苇, 等. 2020. 胶东金翅岭金矿床黄铁矿原位微量元素和硫同位素特征及对矿床成因的指示. 地球科学, 45(3): 945-959. doi: 10.3799/dqkx.2019.057
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)  / Tables(1)

      Article views (2247) PDF downloads(163) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return