• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 1
    Jan.  2022
    Turn off MathJax
    Article Contents
    Jin Song, Li Yingjie, Qian Cheng, Zhang Yang, Meng Du, Yang Haibo, Wang Bo, Wu Guangfeng, 2022. Geochronology and Geochemistry of Two Types of Basic Rocks in Horqin Right Middle Banner, Inner Mongolia and Their Tectonic Significances. Earth Science, 47(1): 342-356. doi: 10.3799/dqkx.2021.051
    Citation: Jin Song, Li Yingjie, Qian Cheng, Zhang Yang, Meng Du, Yang Haibo, Wang Bo, Wu Guangfeng, 2022. Geochronology and Geochemistry of Two Types of Basic Rocks in Horqin Right Middle Banner, Inner Mongolia and Their Tectonic Significances. Earth Science, 47(1): 342-356. doi: 10.3799/dqkx.2021.051

    Geochronology and Geochemistry of Two Types of Basic Rocks in Horqin Right Middle Banner, Inner Mongolia and Their Tectonic Significances

    doi: 10.3799/dqkx.2021.051
    • Received Date: 2021-02-08
      Available Online: 2022-02-11
    • Publish Date: 2022-01-20
    • The Late Paleozoic tectonic evolution in the eastern Xing-Meng orogenic belt is controversial, and the basic magmatism is a good geological record in the process of tectonic evolution. In this paper, the geological features, petrography, geochronology and geochemistry of the two newly identified basic rocks (Duerji basic rocks and Jiahada basic rocks) in the Horqin Right Middle Banner area of Inner Mongolia, eastern Hegenshan suture zone, are systematically studied. Both types of mafic rocks are structurally located in the tectonic melange zone. The Duerji mafic rocks are pillow basalt and diabase, and LA-ICP-MS U-Pb of zircon from diabase is 348.3±2.6 Ma. They are tholeiites and their geochemistry is characterized by low Ti and high Mg. LILE is relatively enriched and HFSE is relatively depleted. The mafic rocks in Jiahada are basalts, and the zircon U-Pb age is 317.6±3.0 Ma. The geochemistry is calc-alkaline series, and they are characterized by HFSE depletion and LILE enrichment compared with the Duerji mafic rocks. They are more abundant in LILE and LREE. Based on the research results of Early Carboniferous ophiolites and intracontinental subduction in Hegenshan suture zone, the evolution from Duerji mafic rocks to Jiahada mafic rocks may indicate the progressive process of Early-Late Carboniferous intra-oceanic subduction in the eastern part of the Paleo-Asian Ocean, characterized by the evolution of intra-oceanic arc from immature to mature.

       

    • loading
    • Cheng, Y., Xiao, Q.H., Li, T.D., et al., 2019. Magmatism and Tectonic Background of Early Permian Intra-Oceanic Arc in Diyanmiao Subduction Accretion Complex Belt in Eastern Margin of Central Asian Orogenic Belt. Earth Science, 44(10): 3454-3468 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201910018.htm
      Feng, Z. Q., Jia, J., Liu, Y. J., et al., 2015. Geochronology and Geochemistry of the Carboniferous Magmatism in the Northern Great Xing'an Range, NE China: Constraints on the Timing of Amalgamation of Xing'an and Songnen Blocks. Journal of Asian Earth Sciences, 113: 411-426. https://doi.org/10.1016/j.jseaes.2014.12.017
      Fu, J.Y., Wang, Y., Zhong, H., et al., 2017. Geochemistry and Source Characteristics of Ultramafic Rocks in Tuquan Mangniuhai, Inner Mongolia. Journal of Jilin University (Earth Science Edition), 47(4): 1172-1186 (in Chinese with English abstract). http://www.researchgate.net/publication/319458080_Geochemistry_and_source_characteristics_of_ultramafic_rocks_in_tuquan_mangniuhai_inner_mongolia
      Herzberg, C., O'hara, M. J., 2002. Plume-Associated Ultramafic Magmas of Phanerozoic Age. Journal of Petrology, 43(10): 1857-1883. https://doi.org/10.1093/petrology/43.10.1857
      Huang, B., Fu, D., Li, S.C., et al., 2016. The Age and Tectonic Implications of the Hegenshan Ophiolite in Inner Mongolia. Acta Petrologica Sinica, 32(1): 158-176 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201601021.htm
      Huang, S. C., Zheng, Y. F., 2017. Mantle Geochemistry: Insights from Ocean Island Basalts. Scientia Sinica Terrae, 47(10): 1125-1152 (in Chinese). doi: 10.1360/N072017-0094
      Ishizuka, O., Tani, K., Reagan, M. K., 2014. Izu-Bonin-Mariana Forearc Crust as a Modern Ophiolite Analogue. Elements, 10(2): 115-120. https://doi.org/10.2113/gselements.10.2.115
      Jian, P., KrÖner, A., Windley, B. F., et al., 2012. Carboniferous and Cretaceous Mafic-Ultramafic Massifs in Inner Mongolia (China): A SHRIMP Zircon and Geochemical Study of the Previously Presumed Integral "Hegenshan Ophiolite". Lithos, 142-143: 48-66. https://doi.org/10.1016/j.lithos.2012.03.007
      Jin, S., 2020. Study of Material Composition and Tectonic Properties of the Duerji Tectonic Melange, Inner Mongolia. Acta Geologica Sinica, 94(8): 2227-2242 (in Chinese with English abstract).
      Kang, J.L., Xiao, Z.B., Wang, H.C., et al., 2016. Late Paleozoic Subduction of the Paleo-Asian Ocean: Geochronological and Geochemical Evidence from the Meta-Basic Volcanics of Xilinhot, Inner Mongolia. Acta Geologica Sinica, 90(2): 383-397 (in Chinese with English abstract).
      Kamei, A., Owada, M., Nagao, T., et al., 2004. High-Mg Diorites Derived from Sanukitic HMA Magmas, Kyushu Island, Southwest Japan Arc: Evidence from Clinopyroxene and Whole Rock Compositions. Lithos, 75(3-4): 359-371. https://doi.org/10.1016/j.lithos.2004.03.006
      Li, J.Y., Gao, L.M., Sun, G.H., et al., 2007. Shuangjingzi Middle Triassic Syn-Collisional Crust-Derived Granite in the East Inner Mongolia and Its Constraint on the Timing of Collision between Siberian and Sino-Korean Paleo-Plates. Acta Petrologica Sinica, 23(3): 565-582 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200703006.htm
      Li, Y. J., Wang, G. H., Santosh, M., et al., 2018. Supra-Subduction Zone Ophiolites from Inner Mongolia, North China: Implications for the Tectonic History of the Southeastern Central Asian Orogenic Belt. Gondwana Research, 59: 126-143. https://doi.org/10.1016/j.gr.2018.02.018
      Li, Y. J., Wang, G. H., Santosh, M., et al., 2020. Subduction Initiation of the SE Paleo-Asian Ocean: Evidence from a Well Preserved Intra-Oceanic Forearc Ophiolite Fragment in Central Inner Mongolia, North China. Earth and Planetary Science Letters, 535: 116087. https://doi.org/10.1016/j.epsl.2020.116087
      Li, Y.J., Wang, J.F., Wang, G.H., et al., 2018. Discovery and Significance of the Dahate Fore-Arc Basalts from the Diyanmiao Ophiolite in Inner Mongolia. Acta Petrologica Sinica, 34(2): 469-482 (in Chinese with English abstract).
      Liu, J. F., Li, J. Y., Chi, X. G., et al., 2013. A Late- Carboniferous to Early Early-Permian Subduction- Accretion Complex in Daqing Pasture, Southeastern Inner Mongolia: Evidence of Northward Subduction beneath the Siberian Paleoplate Southern Margin. Lithos, 177: 285-296. https://doi.org/10.1016/j.lithos.2013.07.008
      Liu, J.X., Zhang, T., Xu, L.Q., 2006. Discovery and Significance of the Late-Paleozoic Ultrabasic-Basic Rocks in Haolaoluchang Area, Inner Mongolia. Geological Survey and Research, 29(1): 21-29 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-QHWJ200601003.htm
      Liu, Y. J., Li, W. M., Feng, Z. Q., et al., 2017. A Review of the Paleozoic Tectonics in the Eastern Part of Central Asian Orogenic Belt. Gondwana Research, 43: 123-148. https://doi.org/10.1016/j.gr.2016.03.013
      Pan, G.T., Xiao, Q.H., Zhang, K.X., et al., 2019. Recognition of the Oceanic Subduction-Accretion Zones from the Orogenic Belt in Continents and Its Important Scientific Significance. Earth Science, 44(5): 1544-1561 (in Chinese with English abstract).
      Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1-4): 14-48. https://doi.org/10.1016/j.lithos.2007.06.016
      Pearce, J.A., 2014. Immobile Element Fingerprinting of Ophiolites. Elements, 10(2): 101-108. https://doi. org/10.2113/gselements.10.2.101 doi: 10.2113/gselements.10.2.101
      Reagan, M. K., Ishizuka, O., Stern, R. J., et al., 2010. Fore-Arc Basalts and Subduction Initiation in the Izu-Bonin-Mariana System. Geochemistry, Geophysics, Geosystems, 11(3): Q03X12. https://doi.org/10.1029/2009gc002871
      Reagan, M. K., McClelland, W. C., Girard, G., et al., 2013. The Geology of the Southern Mariana Fore-Arc Crust: Implications for the Scale of Eocene Volcanism in the Western Pacific. Earth and Planetary Science Letters, 380: 41-51. https://doi.org/10.1016/j.epsl.2013.08.013
      Schmidt, M. W., Jagoutz, O., 2017. The Global Systematics of Primitive Arc Melts. Geochemistry, Geophysics, Geosystems, 18(8): 2817-2854. https://doi.org/10.1002/2016gc006699
      Shao, J.A., Tian, W., Tang, K.D., et al., 2015. Petrogenesis and Tectonic Settings of the Late Carboniferous High Mg Basalts of Inner Mongolia. Earth Science Frontiers, 22(5): 171-181 (in Chinese with English abstract).
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Sun, F.T., Liu, C., Qiu, D.M., et al., 2018. Petrogenesis and Geodynamic Significance of Intermediate-Basic Intrusive Rocks in Xiaokuile River, Eastern Slope of the Great Xing'an Range: Evidences of Zircon U-Pb Geochronology, Elements and Hf Isotope Geochemistry. Journal of Jilin University (Earth Science Edition), 48(1): 145-164 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-CCDZ201801011.htm
      Wang, J.F., Li, Y.J., Li, H.Y., et al., 2020. Late Carboniferous Intraoceanic Subduction of the Paleo-Asian Ocean: New Evidences from the Zagayin High-Mg Andesite in the Meilaotewula SSZ Ophiolite. Geological Review, 66(2): 289-306 (in Chinese with English abstract).
      Windley, B. F., Alexeiev, D., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47. https://doi.org/10.1144/0016-76492006-022
      Wood, D. A., 1980. The Application of a Th-Hf-Ta Diagram to Problems of Tectonomagmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50(1): 11-30. https://doi.org/10.1016/0012-821x(80)90116-8
      Wu, F. Y., Zhao, G. C., Sun, D. Y., et al., 2007. The Hulan Group: Its Role in the Evolution of the Central Asian Orogenic Belt of NE China. Journal of Asian Earth Sciences, 30(3-4): 542-556. https://doi.org/10.1016/j.jseaes.2007.01.003
      Wu, Y.B., Zheng, Y.F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(16): 1589-1604 (in Chinese). doi: 10.1360/csb2004-49-16-1589
      Xia, L.Q., Xia, Z.C., Xu, X.Y., et al., 2007. The Discrimination between Continental Basalt and Island Arc Basalt Based on Geochemical Method. Acta Petrologica et Mineralogica, 26(1): 77-89 (in Chinese with English abstract).
      Xiao, Q.H., Li, T.D., Pan, G.T., et al., 2016. Petrologic Ideas for Identification of Ocean-Continent Transition: Recognition of Intra-Oceanic Arc and Initial Subduction. Geology in China, 43(3): 721-737 (in Chinese with English abstract).
      Xiao, W.J., Song, D.F., Windley, B.F., et al., 2019. Research Progresses of the Accretionary Processes and Metallogenesis of the Central Asian Orogenic Belt. Scientia Sinica Terrae, 49(10): 1512-1545 (in Chinese). doi: 10.1360/SSTe-2019-0133
      Xiao, W. J., Windley, B. F., Huang, B. C., et al., 2009. End-Permian to Mid-Triassic Termination of the Accretionary Processes of the Southern Altaids: Implications for the Geodynamic Evolution, Phanerozoic Continental Growth, and Metallogeny of Central Asia. International Journal of Earth Sciences, 98(6): 1189-1217. https://doi.org/10.1007/s00531-008-0407-z
      Xu, B., Wang, Z.W., Zhang, L.Y., et al., 2018. The Xing-Meng Intracontinent Orogenic Belt. Acta Petrologica Sinica, 34(10): 2819-2844 (in Chinese with English abstract). http://www.researchgate.net/publication/330638061_The_Xing-Meng_Intracontinent_Orogenic_Belt
      Xu, Y. G., Wang, Q., Tang, G. J., et al., 2020. The Origin of Arc Basalts: New Advances and Remaining Questions. Scientia Sinica Terrae, 50(12): 1818-1844 (in Chinese). doi: 10.1360/SSTe-2020-0032
      Yang, B., Zhang, B., Zhang, Q.K., et al., 2018. Characteristics and Geological Significance of Early Carboniferous High-Mg Andesites in Ma'anshan Area, East Inner Mongolia. Geological Bulletin of China, 37(9): 1760-1770 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD201809023.htm
      Zhang, Q., 2014. Classifications of Mafic-Ultramafic Rocks and Their Tectonic Significance. Chinese Journal of Geology (Scientia Geologica Sinica), 49(3): 982-1017 (in Chinese with English abstract).
      Zhang, Z. C., Li, K., Li, J. F., et al., 2015. Geochronology and Geochemistry of the Eastern Erenhot Ophiolitic Complex: Implications for the Tectonic Evolution of the Inner Mongolia-Daxinganling Orogenic Belt. Journal of Asian Earth Sciences, 97: 279-293. https://doi.org/10.1016/j.jseaes.2014.06.008
      Zhao, Z., Chi, X.G., Liu, J.F., et al., 2010. Late Paleozoic Arc-Related Magmatism in Yakeshi Region, Inner Mongolia: Chronological and Geochemical Evidence. Acta Petrologica Sinica, 26(11): 3245-3258 (in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=1003851227
      程杨, 肖庆辉, 李廷栋, 等, 2019. 中亚造山带东缘迪彦庙俯冲增生杂岩带早二叠世洋内弧岩浆作用及构造背景. 地球科学, 44(10): 3454-3468. doi: 10.3799/dqkx.2019.085
      付俊彧, 汪岩, 钟辉, 等, 2017. 内蒙古突泉县牤牛海地区超镁铁质岩地球化学及源区特征. 吉林大学学报(地球科学版), 47(4): 1172-1186. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201704017.htm
      黄波, 付冬, 李树才, 等, 2016. 内蒙古贺根山蛇绿岩形成时代及构造启示. 岩石学报, 32(1): 158-176. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201601021.htm
      黄士春, 郑永飞, 2017. 地幔地球化学: 洋岛玄武岩制约. 中国科学: 地球科学, 47(10): 1125-1152. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201710001.htm
      金松, 2020. 内蒙古杜尔基构造混杂岩物质组成及构造属性研究. 地质学报, 94(8): 2227-2242. doi: 10.3969/j.issn.0001-5717.2020.08.005
      康健丽, 肖志斌, 王惠初, 等, 2016. 内蒙古锡林浩特早石炭世构造环境: 来自变质基性火山岩的年代学和地球化学证据. 地质学报, 90(2): 383-397. doi: 10.3969/j.issn.0001-5717.2016.02.014
      李锦轶, 高立明, 孙桂华, 等, 2007. 内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束. 岩石学报, 23(3): 565-582. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200703006.htm
      李英杰, 王金芳, 王根厚, 等, 2018. 内蒙古迪彦庙蛇绿岩带达哈特前弧玄武岩的发现及其地质意义. 岩石学报, 34(2): 469-482. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201802019.htm
      刘建雄, 张彤, 许立权, 2006. 内蒙古好老鹿场地区晚古生代超基性-基性岩的发现及意义. 地质调查与研究, 29(1): 21-29. doi: 10.3969/j.issn.1672-4135.2006.01.003
      潘桂棠, 肖庆辉, 张克信, 等, 2019. 大陆中洋壳俯冲增生杂岩带特征与识别的重大科学意义. 地球科学, 44(5): 1544-1561. doi: 10.3799/dqkx.2019.063
      邵济安, 田伟, 唐克东, 等, 2015. 内蒙古晚石炭世高镁玄武岩的成因和构造背景. 地学前缘, 22(5): 171-181. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201505017.htm
      孙凡婷, 刘晨, 邱殿明, 等, 2018. 大兴安岭东坡小奎勒河中基性侵入岩成因及地球动力学意义: 锆石U-Pb年代学、元素和Hf同位素地球化学证据. 吉林大学学报(地球科学版), 48(1): 145-164. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201801011.htm
      王金芳, 李英杰, 李红阳, 等, 2020. 古亚洲洋晚石炭世俯冲作用: 梅劳特乌拉蛇绿岩中扎嘎音高镁安山岩证据. 地质论评, 66(2): 289-306. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202002004.htm
      吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
      夏林圻, 夏祖春, 徐学义, 等, 2007. 利用地球化学方法判别大陆玄武岩和岛弧玄武岩. 岩石矿物学杂志, 26(1): 77-89. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200701010.htm
      肖庆辉, 李廷栋, 潘桂棠, 等, 2016. 识别洋陆转换的岩石学思路: 洋内弧与初始俯冲的识别. 中国地质, 43(3): 721-737. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201603003.htm
      肖文交, 宋东方, Windley, B.F., 等, 2019. 中亚增生造山过程与成矿作用研究进展. 中国科学: 地球科学, 49(10): 1512-1545. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201910003.htm
      徐备, 王志伟, 张立杨, 等, 2018. 兴蒙陆内造山带. 岩石学报, 34(10): 2819-2844. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201810002.htm
      徐义刚, 王强, 唐功建, 等, 2020. 弧玄武岩的成因: 进展与问题. 中国科学: 地球科学, 50(12): 1818-1844. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202012009.htm
      杨宾, 张彬, 张庆奎, 等, 2018. 内蒙古东部马鞍山地区早石炭世高镁安山岩特征及地质意义. 地质通报, 37(9): 1760-1770. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201809023.htm
      张旗, 2014. 镁铁‒超镁铁岩的分类及其构造意义. 地质科学, 49(3): 982-1017. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201403023.htm
      赵芝, 迟效国, 刘建峰, 等, 2010. 内蒙古牙克石地区晚古生代弧岩浆岩: 年代学及地球化学证据. 岩石学报, 26(11): 3245-3258. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201011007.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)

      Article views (1288) PDF downloads(76) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return