• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 2
    Feb.  2022
    Turn off MathJax
    Article Contents
    Wang Zhenghe, Tan Fuwen, Sudhir Rajaure, Ganesh Nath Tripathi, Du Baiwei, Yang Ping, 2022. The Tectonosedimentary Evolution since Proterozoic in Nepal and Its Southern Adjacent Areas. Earth Science, 47(2): 405-417. doi: 10.3799/dqkx.2021.087
    Citation: Wang Zhenghe, Tan Fuwen, Sudhir Rajaure, Ganesh Nath Tripathi, Du Baiwei, Yang Ping, 2022. The Tectonosedimentary Evolution since Proterozoic in Nepal and Its Southern Adjacent Areas. Earth Science, 47(2): 405-417. doi: 10.3799/dqkx.2021.087

    The Tectonosedimentary Evolution since Proterozoic in Nepal and Its Southern Adjacent Areas

    doi: 10.3799/dqkx.2021.087
    • Received Date: 2021-02-11
    • Publish Date: 2022-02-25
    • At present, the tectonosedimentary evolution since Proterozoic in Nepal and its southern adjacent area is still lacking of systematic research. In order to promote divisional geological understanding of the area, the author intends to combine the previous and the new research results to systematically summarize and discuss the tectonosedimentary evolution of the Lesser Himalaya of Nepal and its southern areas. The results show that, the tectonosedimentary evolution in the less Himalaya of Nepal and its southern areas are closely related to the northern part of the Indian shield in the geological history; since Proterozoic, it has experienced the following different stages of tectonic evolution in turn, that is from passive continental margin to intracontinental rift to passive continental margin to foreland basin; the Dailekh Group in western Nepal deposited in the passive continental margin before~1.8 Ga or before the pre-Columbia supercontinent; the Vindhyan supergroup deposited in an intracontinental rift(its lower part deposited in graben and its upper part deposited in depression), and the Lakharpata group in Nepal is equivalent to the lower Vindhyan group; the break-up of Gondwana supercontinent resulted in the formation of a series of rift basins with gradually late initial development time from north to south; the Surkhet Group and the Siwalik Group are deposited in passive continental margin to foreland basin, and the Swat/Subathu Formation of Surkhet Group is the last set of marine sedimentary strata in the geological history of the southern Himalayas, and it is also the key sedimentary response during the passive continental margin changing to the foreland basin; the large-scale molasse formation of the Siwalik Group marked the rapid and substantial uplift of the Himalayas, and after the group's sedimentation and diagenesis, the further compression of the Indo-Eurasian plate led to the last strong tectonic movement in geological history so far, forming the MFT and Siwalik fold belts, and forming the present tectonic framework of the Himalaya.

       

    • loading
    • Banerjee, S., Dutta, S., Paikaray, S., et al., 2006. Stratigraphy, Sedimentology and Bulk Organic Geochemistry of Black Shales from the Proterozoic Vindhyan Supergroup (Central India). Journal of Earth System Science, 115(1): 37-47. https://doi.org/10.1007/BF02703024
      Bera, M. K., Sarkar, A., Chakraborty, P. P., et al., 2008. Marine to Continental Transition in Himalayan Foreland. Geological Society of America Bulletin, 120(9/10): 1214-1232. https://doi.org/10.1130/B26265.1
      Bhatia, S. B., Bhargava, O. N., 2006. Biochronological Continuity of the Paleogene Sediments of the Himalayan Foreland Basin: Paleontological and Other Evidences. Journal of Asian Earth Sciences, 26(5): 477-487. https://doi.org/10.1016/j.jseaes.2004.10.007
      Bose, P. K., Sarkar, S., Chakrabarty, S., et al., 2001. Overview of the Meso-to Neoproterozoic Evolution of the Vindhyan Basin, Central India. Sedimentary Geology, 141: 395-419. https://doi.org/10.1016/S0037-0738(01)00084-7
      Bouilhol, P., Jagoutz, O., Hanchar, J. M., et al., 2013. Dating the India-Eurasia Collision through Arc Magmatic Records. Earth and Planetary Science Letters, 366: 163-175. https://doi.org/10.1016/j.epsl.2013.01.023
      Chakrabarti, B. K., 2016. Geology of The Himalayan Belt: Deformation, Metamorphism, Stratigraphy. Elsevier Science Publishing Co Inc, 264, Amsterdam.
      Chand, T., Sethi, S., Kaushal, S., et al., 2012. Source Organ of Acies in Tertiary and Pre-Tertiary Sequences of Ganga Basin and Their Hydrocarbon Exploration Significance. 9th Biennial International Conference & Exposition on Petroleum Geophysics: 7.
      Chenet, A., Quidelleur, X., Fluteau, F., et al., 2007. 40K-40Ar Dating of the Main Deccan Large Igneous Province: Further Evidence of KTB Age and Short Duration. Earth and Planetary Science Letters, 263(1-2): 1-15. https://doi.org/10.1016/j.epsl.2007.07.011
      Decelles, P. G., Robinson, D. M., Quade, J., et al., 2001. Stratigraphy, Structure, and Tectonic Evolution of the Himalayan Fold-Thrust Belt in Western Nepal. Tectonics, 20(4): 487-509. https://doi.org/10.1029/2000TC001226
      Dhital, M. R., 2015. Geology of the Nepal Himalaya. Springer International Publishing, 498. https://doi.org/10.1007/978-3-319-02496-7
      Garzanti, E., 1999. Stratigraphy and Sedimentary History of the Nepal Tethys Himalaya Passive Margin. Journal of Asian Earth Sciences, 17(5): 805-827. https://doi.org/10.1016/S1367-9120(99)00017-6
      Garzanti, E., Hu, X., 2015. Latest Cretaceous Himalayan Tectonics: Obduction, Collision or Deccan-Related Uplift? Gondwana Research, 28(1): 165-178. https://doi.org/10.1016/j.gr.2014.03.010
      Gilleaudeau, G. J., Sahoo, S. K., Kah, L. C., et al., 2018. Proterozoic Carbonates of the Vindhyan Basin, India: Chemostratigraphy and Diagenesis. Gondwana Research, 57: 10-25. https://doi.org/10.1016/j.gr.2018.01.003
      Gou, Z.B., Liu, H., Duan, Y.Y., et al., 2020. Timescales of Partial Melting in Yadong Region of Higher Himalayan Crystalline Sequence: Constraints from Zircon U-Pb Geochronology of Naiduila Migmatites. Earth Science, 45(8): 2894-2904(in Chinese with English abstract).
      Heaman, L. M., 1997. Global Mafic Magmatism at 2.45 Ga: Remnants of an Ancient Large Igneous Province? Geology, 25(4): 299-302. https://doi.org/10.1130/0091-7613(1997)025<0299:GMMAGR>2.3.CO;2 doi: 10.1130/0091-7613(1997)025<0299:GMMAGR>2.3.CO;2
      Hodges, K. V., Hubbard, M. S., Silverberg, D. S., et al., 1988. Metamorphic Constraints on the Thermal Evolution of the Central Himalayan Orogen. Philosophical Transactions of the Royal Society B Biological Sciences, 326(A): 257-280. https://doi.org/10.1098/rsta.1988.0087
      Kazi, T. N., Kumar, S.D., 2014. Petrography and Provenance of the Siwalik Group Sandstones from the Main Boundary Thrust Region, Samari River Area, Central Nepal, Sub-Himalaya. Boletin De Geologia, 36(2): 25-44.
      Khadka, D. R., 2017. Assessment of Hydrocarbon Prospectivity in Terai and Siwaliks, Exploration Block 2, Western Nepal. Joural of Geological Resource and Engineering, 5(3): 112-138. https://doi.org/10.17265/2328-2193/2017.03.003
      Kumar, K., 1991. Anthracobune Aijiensis Bov. Sp. (Mammalia: Proboscidea) from the Subathu Formation, Eocene from NW Himalaya, India. Geobios, 24(2): 221-239. https://doi.org/10.1016/S0016-6995(91)80010-W
      Li, A., 2013. Structural Evolution of the Himalayan Thrust Belt, West Nepal. University of Houston, Houston.
      Li, J., Hu, X., Garzanti, E., et al., 2019. Late Cretaceous Topographic Doming Caused by Initial Upwelling of Deccan Magmas: Stratigraphic and Sedimentological Evidence. Geological Society of America Bulletin, 132(3-4) https://doi.org/10.1130/B35133.1
      Li, J.H., Hou, G.T., Huang, X.N., et al., 2001. The Constraint for the Supercontinental Cycles: Evidence from Precambrian Geology of North China Block. Acta Petrologica Sinica, 17(2): 177-186(in Chinese with English abstract).
      Liu, X.B., Liu, X.H., Leloup, P. H., et al., 2012. Ductile Deformation within Upper Himalaya Crystalline Sequence and Geological Implications, in Nyalam Area, Southern Tibet. China Sci. Bull. , 57(17): 1562-1577(in Chinese with English abstract). doi: 10.1360/csb2012-57-17-1562
      Macfarlane, A. M., 1993. Chronology of Tectonic Events in the Crystalline Core of the Himalaya, Langtang National Park, Central Nepal. Tectonics, 12(4): 1004-1025. https://doi.org/10.1029/93TC00916
      Mahanti, S., Mukherjee, S., Mistry, T. K., et al., 2015. Mohana Fawn Limestone Gas Play: a New Discovery in Son Valley, Vindhyan Basin, India. 11th Biennial International Conference & Exposition, SPG India: 6.
      Manglik, A., Adilakshmi, L., Suresh, M., et al., 2015. Thick Sedimentary Sequence around Bahraich in the Northern Part of the Central Ganga Foreland Basin. Tectonophysics, 653: 33-40. https://doi.org/10.1016/j.tecto.2015.03.024
      Meigs, A. J., Burbank, D. W., Beck, R. A., 1995. Middle-Late Miocene (>10 Ma) Formation of the Main Boundary Thrust in the Western Himalaya. Geology (Boulder), 23(5): 423-426. https://doi.org/10.1130/0091-7613(1995)023<0423:MLMMFO>2.3.CO;2 doi: 10.1130/0091-7613(1995)023<0423:MLMMFO>2.3.CO;2
      Ojha, P. S., 2012. Precambrian Sedimentary Basins of India: An Appraisal of Their Petroleum Potential. Geological Society London Special Publications, 366(1): 19-58. https://doi.org/10.1144/SP366.11
      Paul, S., Bisht, B. S., Raturi, V. C., et al., 2013. Exploring Frontiers through Sequence Stratigraphic Approach: Vindhyan Basin Case Study. 10th Biennial International Conference & Exposition, KOCHI: 7.
      Prasad, B. R., Rao, V. V., 2006. Deep Seismic Reflection Study over the Vindhyans of Rajasthan: Implications for Geophysical Setting of the Basin. Journal of Earth System Science, 115(1): 135-147. https://doi.org/10.1007/BF02703030
      Prasad, B., Pundir, B. S., 2017. Gondwana Biostratigraphy of the Purnea Basin (Eastern Bihar, India), and Its Correlation with Rajmahal and Bengal Gondwana Basins. Journal of the Geological Society of India, 90(4): 405-427. https://doi.org/10.1007/s12594-017-0735-3
      Ray, J. S., 2006. Age of the Vindhyan Supergroup: A Review of Recent Findings. Journal of Earth System Science, 115(1): 149-160. https://doi.org/10.1007/BF02703031
      Raza, M., Khan, A., Shamim Khan, M., 2009. Origin of Late Palaeoproterozoic Great Vindhyan Basin of North Indian Shield: Geochemical Evidence from Mafic Volcanic Rocks. Journal of Asian Earth Sciences, 34(6): 716-730. https://doi.org/10.1016/j.jseaes.2008.10.011
      Rogers, J. J. W., 1986. The Dharwar Craton and the Assembly of Peninsular India. Journal of Geology, 94: 129-143. doi: 10.1086/629019
      Sahu, H. S., Raab, M. J., Kohn, B. P., et al., 2013. Denudation History of Eastern Indian Peninsula from Apatite Fission Track Analysis: Linking Possible Plume-Related Uplift and the Sedimentary Record. Tectonophysics, 608: 1413-1428. https://doi.org/10.1016/j.tecto.2013.06.002
      Saunders, A. D., Jones, S. M., Morgan, L. A., et al., 2007. Regional Uplift Associated with Continental Large Igneous Provinces: the Roles of Mantle Plumes and the Lithosphere. Chemical Geology, 241(3-4): 282-318. https://doi.org/10.1016/j.chemgeo.2007.01.017
      Sen, G., 2001. Generation of Deccan Trap Magmas. Journal of Earth System Science, 110(4): 409-431. https://doi.org/10.1007/BF02702904
      Sharma, R. S., 2009. Cratons and Fold Belts of India. Springer, Switzerland, 304.
      Sheth, H. C., Mahoney, J. J., Chandrasekharam, D., 2004. Geochemical Stratigraphy of Deccan Flood Basalts of the Bijasan Ghat Section, Satpura Range, India. Journal of Asian Earth Sciences, 23(1): 127-139. https://doi.org/10.1016/S1367-9120(03)00116-0
      Singh, B. P., Srivastava, A. K., 2011. Storm Activities During the Sedimentation of Late Paleocene-Middle Eocene Subathu Formation, Western Himalayan Foreland Basin. Journal of the Geological Society of India, 77(2): 130-136. https://doi.org/10.1007/s12594-011-0016-5
      Srivastava, P., Patel, S., Singh, N., et al., 2013. Early Oligocene Paleosols of the Dagshai Formation, India: A Record of the Oldest Tropical Weathering in the Himalayan Foreland. Sedimentary Geology, 295(15): 142-156. https://doi.org/10.1016/j.sedgeo.2013.05.011
      Stoecklin, J., 1980. Geology of Nepal and Its Regional Frame. Journal of the Geological Society, 137: 1-34. https://doi.org/10.1144/gsjgs.137.1.0001
      Subedi, D. N., Mahato, S. P., Kc, S. B., et al., 2012. Oil and Gas Exploration Activities in Nepal. 22nd Geophysical Conference, ASEG: 1-4. . https://doi.org/10.1071/ASEG2012ab050
      Tripathy, G. R., Singh, S. K., 2015. Re-Os Depositional Age for Black Shales from the Kaimur Group, Upper Vindhyan, India. Chemical Geology, 413: 63-72. https://doi.org/10.1016/j.chemgeo.2015.08.011
      Upreti, B. N., 1999. An Overview of the Stratigraphy and Tectonics of the Nepal Himalaya. Journal of Asian Earth Sciences, 17(5): 577-606. https://doi.org/10.1016/S1367-9120(99)00047-4
      Wang, W., Cawood, P. A., Pandit, M. K., et al., 2020. Fragmentation of South China from Greater India During the Rodinia-Gondwana Transition. Geology, 49: 228-232. https://doi.org/10.1130/G48308.1
      Yin, A., 2006. Cenozoic Tectonic Evolution of the Himalayan Orogen as Constrained by Along-Strike Variation of Structural Geometry, Exhumation History, and Foreland Sedimentation. Earth Science Frontiers, 13(5): 416-515(in Chinese with English abstract).
      Zhang, Z.M., Ding, H.X., Dong, X., et al, 2019. Two Contrasting Eclogite Types in the Himalayan Orogen and Differential Subduction of Indian Continent. Earth Science, 44(5): 1602-1619(in Chinese with English abstract).
      Zhao, G., Sun, M., Wilde, S. A., et al., 2004. A Paleo-Mesoproterozoic Supercontinent: Assembly, Growth and Breakup. Earth-Science Reviews, 67(1-2): 91-123. https://doi.org/10.1016/j.earscirev.2004.02.003
      苟正彬, 刘函, 段瑶瑶, 等, 2020. 亚东地区高喜马拉雅结晶岩系部分熔融的时限: 来自乃堆拉混合岩锆石U-Pb年代学的约束. 地球科学, 45(8): 2894-2904. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202008011.htm
      李江海, 侯贵廷, 黄雄南, 等, 2001. 华北克拉通对前寒武纪超大陆旋回的基本制约. 岩石学报, 17(2): 177-186. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200102000.htm
      刘小兵, 刘小汉, Leloup P.H., 等, 2012. 藏南聂拉木高喜马拉雅结晶岩系上部韧性变形年代学及地质意义. 科学通报, (17): 1562-1574. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201217007.htm
      尹安, 2006. 喜马拉雅造山带新生代构造演化: 沿走向变化的构造几何形态、剥露历史和前陆沉积的约束. 地学前缘, 13(5): 416-515. doi: 10.3321/j.issn:1005-2321.2006.05.017
      张泽明, 丁慧霞, 董昕, 等, 2019. 喜马拉雅造山带两种不同类型榴辉岩与印度大陆差异性俯冲. 地球科学, 44(5): 1602-1619. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201905016.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(1)

      Article views (1110) PDF downloads(112) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return