• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Zhou Jiao, Cai Pengjie, Yang Chupeng, Li Xuejie, Gao Hongfang, Cai Guanqiang, Zhou Jianhou, Yang Tianbang, 2022. Geochemical Characteristics and Genesis of Polymetallic Nodules (Crusts) in Seamount Chain of Eastern Subbasin, South China Sea. Earth Science, 47(7): 2586-2601. doi: 10.3799/dqkx.2021.093
    Citation: Zhou Jiao, Cai Pengjie, Yang Chupeng, Li Xuejie, Gao Hongfang, Cai Guanqiang, Zhou Jianhou, Yang Tianbang, 2022. Geochemical Characteristics and Genesis of Polymetallic Nodules (Crusts) in Seamount Chain of Eastern Subbasin, South China Sea. Earth Science, 47(7): 2586-2601. doi: 10.3799/dqkx.2021.093

    Geochemical Characteristics and Genesis of Polymetallic Nodules (Crusts) in Seamount Chain of Eastern Subbasin, South China Sea

    doi: 10.3799/dqkx.2021.093
    • Received Date: 2021-04-12
    • Publish Date: 2022-07-25
    • In order to further explain the geochemical characteristics and genesis of polymetallic nodules (crusts) in different regions of the South China Sea, X-ray diffraction, X-ray fluorescence spectroscopy, SEM-EDS analysis and X-Series analysis were carried out on the newly obtained polymetallic nodules (crusts) from the Huangyan-Zhenbei seamount chain in the eastern Subbasin. The mineral composition and geochemical characteristics of polymetallic nodules (crusts) were analyzed by ICP-MS. The results show that the mineral compositions of polymetallic nodules (crusts) are hydroxidite, quartz and plagioclase, and the main rock forming elements are Si and Al. It is rich in Mn, Fe, Co, Ti, Ni, Pb, Sr, Cu and other metal elements. Compared with other areas in the South China Sea, it has the characteristics of medium Fe and Mn contents, and the geochemical element characteristics are similar to those of ferromanganese nodules (crusts) found in the northwest slope of the South China Sea. The REE content of nodules (crusts) in the study area is high (average 2 070.01×10-6), which is higher than other samples in the northern South China Sea, and close to the industrial grade of crusts in the West Pacific, indicating its important rare earth resource prospect. The results of Be isotope indicate that the age of Fe Mn nodules in this area is 1.17‒8.51 Ma, which was formed after a large number of volcanic eruptions in the Late Miocene. Therefore, the hydrogenesis is the main control of the seamount chain nodules (crusts) in the eastern Subbasin of the South China Sea, and the input of terrigenous materials, volcanism and leaching of high-pressure hydrogen rich seawater all provide favorable conditions for the formation of nodules (crusts).

       

    • Bao, G. D., Li, Q. X., 1993. Geochemistry of Rare Earth Elements in Ferromanganese Nodules (Crusts) of the South China Sea. Oceanologia et Limnologia Sinica, 24(3): 304-313 (in Chinese with English abstract).
      Bau, M., Schmidt, K., Koschinsky, A., et al., 2014. Discriminating between Different Genetic Types of Marine Ferro-Manganese Crusts and Nodules Based on Rare Earth Elements and Yttrium. Chemical Geology, 381: 1-9. https://doi.org/10.1016/j.chemgeo.2014.05.004
      Bonatti, E., Kraemer, T., Rydell, H., 1972. Classification and Genesis of Submarine Iron-Manganese Deposits. In: Horn, D. R., ed., Papers from a Conference on Ferromanganese Deposits on the Ocean Floor. Journal of National Science Foundation of Sri Lanka, 149-166.
      Bu, W. R., Shi, X. F., Peng, J. T., et al., 2001. Geochemical Constraints on the Formation Environment of Ferromanganese Nodules in the Central Pacific Seamount. Chinese Science Bulletin, 46(S1): 89-95 (in Chinese). doi: 10.1360/csb2001-46-S1-89
      Cao, Y., Li, C. F., Yao, Y. J., 2017. Thermal Subsidence and Sedimentary Processes in the South China Sea Basin. Marine Geology, 394: 30-38. https://doi.org/10.1016/j.margeo.2017.07.022
      Chen, H., Xie, X. N., Mao, K. N., et al., 2020. Depositional Characteristics and Formation Mechanisms of Deep-Water Canyon Systems along the Northern South China Sea Margin. Journal of Earth Science, 31(4): 808-819. https://doi.org/10.1007/s12583-020-1284-z
      Chen, J. R., 1984. Features of the Ferromanganese Nodules in the Beibu Gulf, the South China Sea. Marine Science Bulletin, 3(3): 46-50 (in Chinese with English abstract).
      Chen, Z., Yang, H. N., Yan, W., et al., 2006. Distributions and Divisions of Mineral Resources in the Sea Areas of China: Placer Deposit and Ferromanganese Nodule/Crust. Marine Geology & Quaternary Geology, 26(5): 101-108 (in Chinese with English abstract).
      Cronan, D. S., 2001. Manganese Nodules. Encyclopedia of Ocean Sciences, 1526-1533.
      Ding, W. W., 2021. Continental Margin Dynamics of South China Sea: From Continental Break-Up to Seafloor Spreading. Earth Science, 46(3): 790-800 (in Chinese with English abstract).
      Guan, Y., Sun, X. M., Ren, Y. Z., et al., 2017. Mineralogy, Geochemistry and Genesis of the Polymetallic Crusts and Nodules from the South China Sea. Ore Geology Reviews, 89: 206-227. https://doi.org/10.1016/j.oregeorev.2017.06.020
      Halbach, P., Scherhag, C., Hebisch, U., et al., 1981. Geochemical and Mineralogical Control of Different Genetic Types of Deep-Sea Nodules from the Pacific Ocean. Mineralium Deposita, 16(1): 59-84. https://doi.org/10.1007/BF00206455
      Hein, J. R., Schwab, W. C., Davis, A. S., 1988. Cobalt- and Platinum-Rich Ferromanganese Crusts and Associated Substrate Rocks from the Marshall Islands. Marine Geology, 78(3-4): 255-283. https://doi.org/10.1016/0025-3227(88)90113-2
      Jauhari, P., Pattan, J. N., 2000. Ferromanganese Nodules from the Central Indian Ocean Basin. In: Cronan, D. S., ed., Handbook of Marine Mineral Deposits. The Chemical Rubber Company Press, Boca Raton, 171-195.
      Josso, P., Pelleter, E., Pourret, O., et al., 2017. A New Discrimination Scheme for Oceanic Ferromanganese Deposits Using High Field Strength and Rare Earth Elements. Ore Geology Reviews, 87: 3-15. https://doi.org/10.1016/j.oregeorev.2016.09.003
      Koschinsky, A., Halbach, P., 1995. Sequential Leaching of Marine Ferromanganese Precipitates: Genetic Implications. Geochimica et Cosmochimica Acta, 59(24): 5113-5132. https://doi.org/10.1016/0016-7037(95)00358-4
      Lai, L. R., 1995. Disscusion on the Genesis of Manganese Nodules of the South China Sea. Mineral Resources and Geology, 9(4): 293-298 (in Chinese).
      Li, C. F., Xu, X., Lin, J., et al., 2014. Ages and Magnetic Structures of the South China Sea Constrained by Deep Tow Magnetic Surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 15(12): 4958-4983. https://doi.org/10.1002/2014gc005567
      Li, Z. L., Qiu, Z. L., Qin, S. C., et al., 1991. A Study on the Forming Conditions of Basalts in Seamounts of the South China Sea. Acta Mineralogica Sinica, 11(4): 325-333, 441 (in Chinese with English abstract).
      Liang, H. F., Yao, D., Liu, X. B., et al., 1991. Geochemistry of Polymetallic Crust from Jianfeng Seamount, South China Sea. Marine Geology & Quaternary Geology, 11(4): 49-58 (in Chinese with English abstract).
      Lin, Z. H., Ji, F. W., Zhang, F. Y., et al., 2003. Characteristics and Origin of Ferromanganese Nodules from the Northeastern Continental Slope of the South China Sea. Marine Geology & Quaternary Geology, 23(1): 7-12 (in Chinese with English abstract).
      Liu, X. J., Tang, D. H., Yan, P., et al., 2019. Mineralogy and Geochemisry of Ferromanganese Crusts from Guanshi Seamount in the Eastern South China Sea. Marine Geology & Quaternary Geology, 39(3): 94-103 (in Chinese with English abstract).
      Liu, X. S., Chen, X. G., Sun, K., et al., 2021. Provenance of U1431 Sediments from the Eastern Subbasin of the South China Sea since Middle Miocene. Earth Science, 46(3): 1008-1022 (in Chinese with English abstract).
      Liu, Z. F., Zhao, Y. L., Colin, C., et al., 2016. Source-to-Sink Transport Processes of Fluvial Sediments in the South China Sea. Earth-Science Reviews, 153: 238-273. https://doi.org/10.1016/j.earscirev.2015.08.005
      Manheim, F. T., 1986. Marine Cobalt Resources. Science, 232(4750): 600-608. https://doi.org/10.1126/science.232.4750.600
      McLennan, S. M., 1989. Rare Earth Elements in Sedimentary Rocks: Influence of Provenance and Sedimentary Processes. In: Lipen, B. R., McKay, G. A., eds., Geochemistry and Mineralogy of Rare Earth Elements, Review in Mineralogy and Geochemistry. Mineralogical Society of America, Washington D. C., 169-200.
      Menendez, A., James, R. H., Lichtschlag, A., et al., 2019. Controls on the Chemical Composition of Ferromanganese Nodules in the Clarion-Clipperton Fracture Zone, Eastern Equatorial Pacific. Marine Geology, 409: 1-14. https://doi.org/10.1016/j.margeo.2018.12.004
      Pan, J. H., Liu S. Q., 1999. Distribution, Composition and Element Geochemistry of Co-Rich Crusts in the Western Pacific. Acta Geoscientia Sinica (Bulletin of the Chinese Academy of Geological Sciences), 20(1): 47-54 (in Chinese with English abstract).
      Piper, D. Z., 1974. Rare Earth Elements in Ferromanganese Nodules and Other Marine Phases. Geochimica et Cosmochimica Acta, 38(7): 1007-1022. https://doi.org/10.1016/0016-7037(74)90002-7
      Ren, J. B., He, G. W., Yao, H. Q., et al., 2016. Geochemistry and Significance of REE and PGE of the Cobalt-Rich Crusts from West Pacific Ocean Seamounts. Earth Science, 41(10): 1745-1757 (in Chinese with English abstract).
      Shi, X. F., Yan, Q. S., 2011. Geochemistry of Cenozoic Magmatism in the South China Sea and Its Tectonic Implications. Marine Geology & Quaternary Geology, 31(2): 59-72 (in Chinese with English abstract).
      Von Heimendahl, M., Hubred, G. L., Fuerstenau, D. W., et al., 1976. A Transmission Electron Microscope Study of Deep-Sea Manganese Nodules. Deep Sea Research and Oceanographic Abstracts, 23(1): 69-79. https://doi.org/10.1016/0011-7471(76)90809-3
      Wang, X. J., Chen, Y. W., Wu, M. Q., 1984. Geochemistry of RE and Trace Elements in Ferromanganese Nodules and Their Genesis. Oceanologia et Limnologia Sinica, 15(6): 501-514 (in Chinese with English abstract).
      Wang, Y. J., Han, X. Q., Luo, Z. H., et al., 2009. Late Miocene Magmatism and Evolution of Zhenbei-Huangyan Seamount in the South China Sea: Evidence from Petrochemistry and Chronology. Acta Oceanologica Sinica, 31(4): 93-102 (in Chinese with English abstract).
      Wegorzewski, A. V., Kuhn, T., 2014. The Influence of Suboxic Diagenesis on the Formation of Manganese Nodules in the Clarion Clipperton Nodule Belt of the Pacific Ocean. Marine Geology, 357: 123-138. https://doi.org/10.1016/j.margeo.2014.07.004
      Wei, J. X., 2015. Ⅰ. High-Precision Measurement of Boron Isotope of Silicate Materials and Its Application Ⅱ. Geochronological and Geochemical Studies on Cenozoic Basalts from South China Sea Seamounts (Dissertation). University of Chinese Academy of Sciences (Guangzhou Institute of Chemistry, Chinese Academy of Sciences), Guangzhou (in Chinese with English abstract).
      Wei, Z. Q., He, G. W., Deng, X. G., et al., 2017. The Progress in the Study and Survey of Oceanic Cobalt-Rich Crust Resources. Geology in China, 44(3): 460-472 (in Chinese with English abstract).
      Wu, S. Y., Zeng, W. Y., Shi, C. T., et al., 1998. Determination of 10Be in Manganese Nodule Samples Using Accelerator Mass Spectrometry. Journal of Oceanography in Taiwan Strait, 17(2): 185-189 (in Chinese with English abstract).
      Xie, S. P., Xie, Q., Wang, D. X., et al., 2003. Summer Upwelling in the South China Sea and Its Role in Regional Climate Variations. Journal of Geophysical Research, 108(C8): 1-13. https://doi.org/10.1029/2003jc001867
      Xu, Y. G., Wei, J. X., Qiu, H. N., et al., 2012. Opening and Evolution of the South China Sea Constrained by Studies on Volcanic Rocks: Preliminary Results and a Research Design. Chinese Science Bulletin, 57(24): 3150-3164. https://doi.org/10.1007/s11434-011-4921-1
      Yao, B. C., Zeng, W. J., Hayes, D. E., et al., 1994. The Geological Memoir of South China Sea Surveyed Jointly by China and the U. S. A. . China University of Geosciences Press, Wuhan (in Chinese).
      Yin, Z. X., Wang, H. F., Han, J. S., et al., 2019. Comparison between the Marginal-Sea Polymetallic Nodules in South China Sea and Ocean Polymetallic Nodules. Journal of Jilin University (Earth Science Edition), 49(1): 261-277 (in Chinese with English abstract).
      Zhang, F. Y., Zhang, X. Y., Yang, Q. H., et al., 2005. Research on Sedimentations and Material Sources in the Eastern South China Sea. Acta Oceanologica Sinica, 27(2): 79-90 (in Chinese with English abstract).
      Zhang, Z. G., Du, Y. S., Wu, C. H., et al., 2013. Growth of a Polymetallic Nodule from Northwestern Continental Margin of the South China Sea and Its Response to Changes in Paleoceanographical Environment of the Late Cenozoic. Scientia Sinica Terrae, 43(7): 1168-1178 (in Chinese). doi: 10.1360/zd-2013-43-7-1168
      Zhang, Z. G., Gao, L. F., Li, C. C., et al., 2011. Enrichment Characteristics and Resource Effects of Rare Earth Elements in Polymetallic Nodules/Crusts. Journal of the Chinese Society of Rare Earths, 29(5): 630-636 (in Chinese with English abstract).
      Zhang, Z. G., Fang, N. Q., Du, Y. S., et al., 2009. Geochemical Characteristics and Their Causative Mechanism of Polymetallic Nodules from the Northwest Continental Margin of the South China Sea. Earth Science, 34(6): 955-962 (in Chinese with English abstract).
      Zhuang, D. D., Chu, F. Y., Zhu, J. H., 2015. The Origin of the Opal-Layer Full of Todorokite Veinlets in Polymetallic Nodules from the Eastern Pacific Ocean. Journal of Marine Sciences, 33(2): 19-29 (in Chinese with English abstract).
      Zhong, Y., Chen, Z., González, F. J., et al., 2017. Composition and Genesis of Ferromanganese Deposits from the Northern South China Sea. Journal of Asian Earth Sciences, 138: 110-128. https://doi.org/10.1016/j.jseaes.2017.02.015
      鲍根德, 李全兴, 1993. 南海铁锰结核(壳)的稀土元素地球化学. 海洋与湖沼, 24(3): 304-313. doi: 10.3321/j.issn:0029-814X.1993.03.013
      卜文瑞, 石学法, 彭建堂, 等, 2001. 中太平洋海山铁锰结核形成环境的地球化学制约. 科学通报, 46(增刊): 89-95. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2001S1014.htm
      陈俊仁, 1984. 南海北部湾铁锰结核特征. 海洋通报, 3(3): 46-50. https://www.cnki.com.cn/Article/CJFDTOTAL-HUTB198403005.htm
      陈忠, 杨慧宁, 颜文, 等, 2006. 中国海域固体矿产资源分布及其区划: 砂矿资源和铁锰(微)结核‒结壳. 海洋地质与第四纪地质, 26(5): 101-108. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200605017.htm
      丁巍伟, 2021. 南海大陆边缘动力学: 从陆缘破裂到海底扩张. 地球科学, 46(3): 790-800. doi: 10.3799/dqkx.2020.303
      赖来仁, 1995. 中国南海锰结核的成因探讨. 矿产与地质, 9(4): 293-298. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD1995Z1015.htm
      李兆麟, 丘志力, 秦社彩, 等, 1991. 南海海山玄武岩形成条件研究. 矿物学报, 11(4): 325-333, 441. doi: 10.3321/j.issn:1000-4734.1991.04.005
      梁宏锋, 姚德, 刘新波, 等, 1991. 南海尖峰海山多金属结壳地球化学. 海洋地质与第四纪地质, 11(4): 49-58. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ199104007.htm
      林振宏, 季福武, 张富元, 等, 2003. 南海东北陆坡区铁锰结核的特征和成因. 海洋地质与第四纪地质, 23(1): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200301002.htm
      刘兴健, 唐得昊, 阎贫, 等, 2019. 南海东部管事海山铁锰结壳的矿物组成和地球化学特征. 海洋地质与第四纪地质, 39(3): 94-103. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201903009.htm
      刘雪松, 陈雪刚, 孙凯, 等, 2021. 南海东部次海盆U1431站位中中新世以来的沉积物来源特征. 地球科学, 46(3): 1008-1022. doi: 10.3799/dqkx.2020.290
      潘家华, 刘淑琴, 1999. 西太平洋富钴结壳的分布、组分及元素地球化学. 地球学报, 20(1): 47-54. doi: 10.3321/j.issn:1006-3021.1999.01.007
      任江波, 何高文, 姚会强, 等, 2016. 西太平洋海山富钴结壳的稀土和铂族元素特征及其意义. 地球科学, 41(10): 1745-1757. doi: 10.3799/dqkx.2016.503
      石学法, 鄢全树, 2011. 南海新生代岩浆活动的地球化学特征及其构造意义. 海洋地质与第四纪地质, 31(2): 59-72. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201102011.htm
      王贤觉, 陈毓蔚, 吴明清, 1984. 铁锰结核的稀土和微量元素地球化学及其成因. 海洋与湖沼, 15(6): 501-514. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ198406000.htm
      王叶剑, 韩喜球, 罗照华, 等, 2009. 晚中新世南海珍贝‒黄岩海山岩浆活动及其演化: 岩石地球化学和年代学证据. 海洋学报(中文版), 31(4): 93-102. doi: 10.3321/j.issn:0253-4193.2009.04.011
      魏静娴, 2015. Ⅰ. 硅酸盐高精度B同位素测定方法的建立及其应用Ⅱ. 南海海山玄武岩的年代学和地球化学研究(博士学位论文). 广州: 中国科学院大学(中国科学院广州地球化学研究所).
      韦振权, 何高文, 邓希光, 等, 2017. 大洋富钴结壳资源调查与研究进展. 中国地质, 44(3): 460-472. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201703006.htm
      吴世炎, 曾文义, 施纯坦, 等, 1998. 加速器质谱法测定深海锰结核样品中的10Be. 台湾海峡, 17(2): 185-189. https://www.cnki.com.cn/Article/CJFDTOTAL-TWHX199802012.htm
      姚伯初, 曾维军, Hayes, D. E., 等, 1994. 中美合作调研南海地质专报. 武汉: 中国地质大学出版社.
      殷征欣, 王海峰, 韩金生, 等, 2019. 南海边缘海多金属结核与大洋多金属结核对比. 吉林大学学报(地球科学版), 49(1): 261-277. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201901025.htm
      张富元, 张霄宇, 杨群慧, 等, 2005. 南海东部海域的沉积作用和物质来源研究. 海洋学报(中文版), 27(2): 79-90. doi: 10.3321/j.issn:0253-4193.2005.02.010
      张振国, 杜远生, 吴长航, 等, 2013. 南海西北陆缘大型多金属结核的生长过程及其对晚新生代古海洋环境变化的响应. 中国科学: 地球科学, 43(7): 1168-1178. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201307011.htm
      张振国, 高莲凤, 李昌存, 等, 2011. 多金属结核/结壳中稀土元素的富集特征及其资源效应. 中国稀土学报, 29(5): 630-636. https://www.cnki.com.cn/Article/CJFDTOTAL-XTXB201105021.htm
      张振国, 方念乔, 杜远生, 等, 2009. 南海西北陆缘多金属结核地球化学特征及成因. 地球科学, 34(6): 955-962. doi: 10.3321/j.issn:1000-2383.2009.06.010
      庄丹丹, 初凤友, 朱继浩, 2015. 东太平洋多金属结核富钡镁锰矿细脉蛋白石层的成因机制. 海洋学研究, 33(2): 19-29. doi: 10.3969/j.issn.1001-909X.2015.02.004
    • Relative Articles

    • Cited by

      Periodical cited type(1)

      1. 吴潇平,赵广涛,徐翠玲,来志庆. 东南太平洋秘鲁海盆DEA区浅层埋藏型铁锰结核的矿物学和地球化学特征及成因类型. 中国海洋大学学报(自然科学版). 2023(02): 94-106 .

      Other cited types(2)

    • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-050255075100125
      Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 50.1 %FULLTEXT: 50.1 %META: 45.6 %META: 45.6 %PDF: 4.3 %PDF: 4.3 %FULLTEXTMETAPDF
      Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.4 %其他: 7.4 %其他: 0.9 %其他: 0.9 %China: 0.4 %China: 0.4 %Geumjeong-gu: 0.3 %Geumjeong-gu: 0.3 %India: 0.0 %India: 0.0 %Indianapolis: 0.1 %Indianapolis: 0.1 %Russian Federation: 0.0 %Russian Federation: 0.0 %Saitama: 0.1 %Saitama: 0.1 %San Lorenzo: 0.1 %San Lorenzo: 0.1 %San Mateo: 0.1 %San Mateo: 0.1 %[]: 0.2 %[]: 0.2 %三亚: 0.4 %三亚: 0.4 %上海: 1.3 %上海: 1.3 %东莞: 0.6 %东莞: 0.6 %中卫: 0.1 %中卫: 0.1 %临汾: 0.2 %临汾: 0.2 %克拉玛依: 0.0 %克拉玛依: 0.0 %兰州: 0.2 %兰州: 0.2 %北京: 17.8 %北京: 17.8 %十堰: 0.2 %十堰: 0.2 %南京: 0.8 %南京: 0.8 %南昌: 0.2 %南昌: 0.2 %南通: 0.0 %南通: 0.0 %厦门: 0.5 %厦门: 0.5 %台州: 0.5 %台州: 0.5 %合肥: 0.2 %合肥: 0.2 %呼和浩特: 0.4 %呼和浩特: 0.4 %哥伦布: 0.0 %哥伦布: 0.0 %嘉兴: 0.2 %嘉兴: 0.2 %四平: 0.0 %四平: 0.0 %大连: 0.3 %大连: 0.3 %天津: 0.8 %天津: 0.8 %奥克兰: 0.1 %奥克兰: 0.1 %宣城: 0.3 %宣城: 0.3 %宿州: 0.0 %宿州: 0.0 %常州: 0.1 %常州: 0.1 %平顶山: 0.2 %平顶山: 0.2 %广州: 4.2 %广州: 4.2 %延边: 0.0 %延边: 0.0 %张家口: 0.6 %张家口: 0.6 %惠州: 0.1 %惠州: 0.1 %成都: 0.3 %成都: 0.3 %扬州: 0.9 %扬州: 0.9 %攀枝花: 0.2 %攀枝花: 0.2 %文昌: 0.1 %文昌: 0.1 %新德里: 0.1 %新德里: 0.1 %日喀则: 0.1 %日喀则: 0.1 %昆明: 0.1 %昆明: 0.1 %晋中: 0.1 %晋中: 0.1 %晋城: 0.1 %晋城: 0.1 %景德镇: 0.0 %景德镇: 0.0 %杭州: 3.1 %杭州: 3.1 %桂林: 0.1 %桂林: 0.1 %武汉: 2.8 %武汉: 2.8 %永州: 0.1 %永州: 0.1 %汕头: 0.2 %汕头: 0.2 %沈阳: 0.5 %沈阳: 0.5 %沧州: 0.1 %沧州: 0.1 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.1 %济南: 0.1 %海东: 0.0 %海东: 0.0 %海口: 1.0 %海口: 1.0 %淮北: 0.0 %淮北: 0.0 %深圳: 0.3 %深圳: 0.3 %温州: 0.7 %温州: 0.7 %湖州: 0.2 %湖州: 0.2 %湘潭: 0.4 %湘潭: 0.4 %漯河: 2.1 %漯河: 2.1 %漳州: 0.2 %漳州: 0.2 %烟台: 0.1 %烟台: 0.1 %琼海: 0.3 %琼海: 0.3 %石家庄: 0.7 %石家庄: 0.7 %福州: 0.2 %福州: 0.2 %舟山: 0.0 %舟山: 0.0 %芒廷维尤: 7.7 %芒廷维尤: 7.7 %芝加哥: 0.1 %芝加哥: 0.1 %苏州: 0.1 %苏州: 0.1 %莫斯科: 0.7 %莫斯科: 0.7 %衡水: 0.0 %衡水: 0.0 %衡阳: 0.0 %衡阳: 0.0 %衢州: 0.2 %衢州: 0.2 %襄阳: 0.2 %襄阳: 0.2 %西宁: 24.0 %西宁: 24.0 %西安: 0.4 %西安: 0.4 %贵阳: 0.3 %贵阳: 0.3 %达州: 0.1 %达州: 0.1 %运城: 0.8 %运城: 0.8 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.7 %郑州: 0.7 %重庆: 0.2 %重庆: 0.2 %镇江: 0.3 %镇江: 0.3 %长春: 0.2 %长春: 0.2 %长沙: 3.1 %长沙: 3.1 %长治: 0.1 %长治: 0.1 %青岛: 4.9 %青岛: 4.9 %香港: 0.2 %香港: 0.2 %马德里: 0.1 %马德里: 0.1 %其他其他ChinaGeumjeong-guIndiaIndianapolisRussian FederationSaitamaSan LorenzoSan Mateo[]三亚上海东莞中卫临汾克拉玛依兰州北京十堰南京南昌南通厦门台州合肥呼和浩特哥伦布嘉兴四平大连天津奥克兰宣城宿州常州平顶山广州延边张家口惠州成都扬州攀枝花文昌新德里日喀则昆明晋中晋城景德镇杭州桂林武汉永州汕头沈阳沧州洛阳济南海东海口淮北深圳温州湖州湘潭漯河漳州烟台琼海石家庄福州舟山芒廷维尤芝加哥苏州莫斯科衡水衡阳衢州襄阳西宁西安贵阳达州运城邯郸郑州重庆镇江长春长沙长治青岛香港马德里

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)  / Tables(5)

      Article views (1172) PDF downloads(118) Cited by(3)
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return