• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 4
    Apr.  2022
    Turn off MathJax
    Article Contents
    Wang Bingzhang, Li Jiqing, Fu Changlei, Xu Haiquan, Li Wufu, 2022. Research on Formation and Evolution of Early Paleozoic Bulhanbuda Arc in East Kunlun Orogen. Earth Science, 47(4): 1253-1270. doi: 10.3799/dqkx.2021.094
    Citation: Wang Bingzhang, Li Jiqing, Fu Changlei, Xu Haiquan, Li Wufu, 2022. Research on Formation and Evolution of Early Paleozoic Bulhanbuda Arc in East Kunlun Orogen. Earth Science, 47(4): 1253-1270. doi: 10.3799/dqkx.2021.094

    Research on Formation and Evolution of Early Paleozoic Bulhanbuda Arc in East Kunlun Orogen

    doi: 10.3799/dqkx.2021.094
    • Received Date: 2021-04-15
      Available Online: 2022-04-29
    • Publish Date: 2022-04-25
    • The Bulhanbuda arc is located in the south of the central fault of East Kunlun orogen. Different from the Late Paleozoic-Mesozoic magmatic arc in the North Kunlun, Early Paleozoic magmatic rocks are widely exposed in the Bulhanbuda area and of great significance to the researches of subduction-accretion process of the Proto-Tethyan Ocean. In this study, it reports the petrology, geochemistry, zircon U-Pb ages, Lu-Hf and Sr-Nd isotopic compositions of the Early Paleozoic magmatic rocks from the Bulhanbuda area. This and previous studies indicate that the subduction-related magmatic activities can be divided into three stages: Cambrian (515-482 Ma), Middle Ordovician (465-463 Ma), and Late Ordovician-Early Silurian (454-438 Ma). The Cambrian magmatic rocks contain Nb-enriched mafic-ultramafic rocks and metaluminous high-K calc-alkaline diorite. The Ordovician magmatic rocks are weakly peraluminous high-K calc-alkaline monzogranites. The Late Ordovician magmatic rocks are dominated by weakly peraluminous medium- and high-K calc-alkaline diorite and monzogranite and contain some metaluminous calc-alkaline quartz diorite and tholeiitic dolerite. These three stage intrusive rocks show similar trace element compositions with those of continental arc andesite. The Sr/Y ratios of the Cambrian diorite are low (22.6-30.0), the Sr/Y ratios of the Middle Ordovician monzogranite are medium, and these of Late Ordovician granodiorite and monzogranite are high. All of these intrusive rocks are enriched in radiogenic Sr and Nd isotopes. The Cambrian diorites display high initial 87Sr/86Sr ratios of 0.715 1-0.715 7 and low εNd(t) values of -7.4 to -7.3. The Middle Ordovician monzogranite have initial 87Sr/86Sr ratios of 0.707 6-0.707 7 and εNd(t) values of -2.5 to -2.4. The Late Ordovician granodiorite and monzogranite have low initial 87Sr/86Sr ratios (0.705 9-0.706 5) and negative εNd(t) values (-3.3 to -1.7). However, the diorite shows relatively high initial 87Sr/86Sr ratios (0.706 9-0.708 5) and low εNd(t) values (-6.0 to -5.6). The three stage magmatic rocks show wide range of the zircon Hf isotopes. Cambrian diorites have negative εHf(t) values (-6.8 to -4.4). Middle Ordovician monzogranites display positive εHf(t) values (+0.13 to +2.90). Late Ordovician granidorite and monzogranite show wide range of εHf(t) values (-2.7 to +9.2). The diorites mainly yield negative εHf(t) values (-8.6 to -2.1). In conclusion, the Bulhanbuda arc is an Andean-type continental margin arc formed during the southward subduction of the Proto-Tethyan Ocean. It has undergone three significant evolutionary stages. In the early stage (515-482 Ma), partial melting of the mantle wedge generated the basic magma, which induced remelting of the Paleoproterozoic lower crust to form intermediate-acid magma. In the middle period (465-463 Ma), the mantle derived basic magma underpenetrated and the thickened lower crust was partially melted to form small-scale acid magma. In the late period (454-438 Ma), the mantle derived basic magma underpenetrated and the thickened lower crust was partially melted to form large-scale intermediate-acid magmatic rocks with adakitic geochemical composition.

       

    • loading
    • Bea, F., Arzamastsev, A., Montero, P., et al., 2001. Anomalous Alkaline Rocks of Soustov, Kola: Evidence of Mantle-Derived Metasomatic Fluids Affecting Crustal Materials. Contributions to Mineralogy and Petrology, 140(5): 554-566. https://doi.org/10.1007/s004100000211
      Bian, Q.T., Pospelov, I., Li, H.M., et al., 2007. Discovery of the End-Early Paleozoic Adakite in the Buqingshan Area, Qinghai Province, and Its Tectonic Implications. Acta Petrologica Sinica, 23(5): 925-934(in Chinese with English abstract).
      Chen, G.C., Pei, X.Z., Li, R.B., et al., 2020. Late Palaeozoic-Early Mesozoic Tectonic-Magmatic Evolution and Mineralization in the Eastern Section of the East Kunlun Orogenic Belt. Earth Science Frontiers, 27(4): 33-48(in Chinese with English abstract).
      Chen, J.J., Fu, L.B., Wei, J.H., et al., 2016. Geochemical Characteristics of Late Ordovician Granodiorite in Gouli Area, Eastern Kunlun Orogenic Belt, Qinghai Province: Implications on the Evolution of Proto-Tethys Ocean. Earth Science, 41(11): 1863-1882(in Chinese with English abstract).
      Chen, Y.X., Pei, X.Z., Li, R.B., et al., 2013. Zircon U-Pb Age, Geochemical Characteristics and Tectonic Significance of Metavolcanic Rocks from Naij Tal Group, East Section of East Kunlun. Earth Science Frontiers, 20(6): 240-254(in Chinese with English abstract).
      Dong, G.C., Luo, M.F., Mo, X.X., et al., 2018a. Petrogenesis and Tectonic Implications of Early Paleozoic Granitoids in East Kunlun Belt: Evidences from Geochronology, Geochemistry and Isotopes. Geoscience Frontiers, 9(5): 1383-1397. https://doi.org/10.1016/j.gsf.2018.03.003
      Dong, Y.P., He, D.F., Sun, S.S., et al., 2018b. Subduction and Accretionary Tectonics of the East Kunlun Orogen, Western Segment of the Central China Orogenic System. Earth-Science Reviews, 186: 231-261. https://doi.org/10.1016/j.earscirev.2017.12.006
      Feng, J.Y., Pei, X.Z., Yu, S.L., et al., 2010. The Discovery of the Mafic-Ultramafic Melange in Kekesha Area of Dulan County, East Kunlun Region, and Its LA-ICP-MS Zircon U-Pb Age. Geology in China, 37(1): 28-38(in Chinese with English abstract).
      Li, H.K., Lu, S.N., Xiang, Z.Q., et al., 2006. SHRIMP U-Pb Zircon Age of the Granulite from the Qingshuiquan Area, Central Eastern Kunlun Suture Zone. Earth Science Frontiers, 13(6): 311-321(in Chinese with English abstract).
      Li, R.B., Pei, X.Z., Li, Z.C., et al., 2013a. Regional Tectonic Transformation in East Kunlun Orogenic Belt in Early Paleozoic: Constraints from the Geochronology and Geochemistry of Helegangnaren Alkali-Feldspar Granite. Acta Geologica Sinica, 87(2): 333-345. doi: 10.1111/1755-6724.12054
      Li, R.B., Pei, X.Z., Li, Z.C., et al., 2013b. Geochemical Features, Age, and Tectonic Significance of the Kekekete Mafic-Ultramafic Rocks, East Kunlun Orogen, China. Acta Geologica Sinica, 87(5): 1319-1333. doi: 10.1111/1755-6724.12131
      Li, R.B., Pei, X.Z., Li, Z.C., et al., 2015. Geochemistry and Zircon U-Pb Geochronology of Granitic Rocks in the Buqingshan Tectonic Mélange Belt, Northern Tibet Plateau, China and Its Implications for Prototethyan Evolution. Journal of Asian Earth Sciences, 105: 374-389. https://doi.org/10.1016/j.jseaes.2015.02.004
      Li, R.B., Pei, X.Z., Li, Z.C., et al., 2017a. Cambrian(~510 Ma) Ophiolites of the East Kunlun Orogen, China: A Case Study from the Acite Ophiolitic Tectonic Mélange. International Geology Review, 60(16): 2063-2083. https://doi.org/10.1080/00206814.2017.1405366
      Li, Z.C., Pei, X.Z., Li, R.B., et al., 2017b. Early Ordovician Island-Arc-Type Manite Granodiorite Pluton from the Buqingshan Tectonic Mélange Belt in the Southern Margin of the East Kunlun Orogen: Constraints on Subduction of the Proto-Tethyan Ocean. Geological Journal, 52(3): 510-528. https://doi.org/10.1002/gj.2785
      Li, R.B., Pei, X.Z., Wei, B., et al., 2019. Constraints of Late Cambrian Mafic Rocks from the Qushi'ang Ophiolite on a Back-Arc System in a Continental Margin, East Kunlun Orogen, Western China. Journal of Asian Earth Sciences, 169: 117-129. https://doi.org/10.1016/j.jseaes.2018.08.006
      Li, Z.C., Pei, X.Z., Li, R.B., et al., 2014. Geochronology, Geochemistry and Tectonic Setting of the Bairiqiete Granodiorite Intrusion (Rock Mass) from the Buqingshan Tectonic Mélange Belt in the Southern Margin of East Kunlun. Acta Geologica Sinica, 88(2): 584-597. https://doi.org/10.1111/1755-6724.12216
      Liu, B., Ma, C.Q., Jiang, H.A., et al., 2013. Early Paleozoic Tectonic Transition from Ocean Subduction to Collisional Orogeny in the Eastern Kunlun Region: Evidence from Huxiaoqin Mafic Rocks. Acta Petrologica Sinica, 29(6): 2093-2106(in Chinese with English abstract).
      Liu, Z.Q., Pei, X.Z., Li, R.B., et al., 2011. LA-ICP-MS Zircon U-Pb Geochronology of the Two Suites of Ophiolites at the Buqingshan Area of the A'nyemaqen Orogenic Belt in the Southern Margin of East Kunlun and Its Tectonic Implication. Acta Geologica Sinica, 85(2): 185-194(in Chinese with English abstract).
      Moyen, J.F., 2009. High Sr/Y and La/Yb Ratios: The Meaning of the "Adakitic Signature". Lithos, 112(3-4): 556-574. https://doi.org/10.1016/j.lithos.2009.04.001
      Pan, G.T., Xiao, Q.H., Lu, S.N., et al., 2009. Subdivision of Tectonic Units in China. Geology in China, 36(1): 1-28(in Chinese with English abstract).
      Pei, X.Z., Li, R.B., Li, Z.C., et al., 2018. Composition Feature and Formation Process of Buqingshan Composite Accretionary Mélange Belt in Southern Margin of East Kunlun Orogen. Earth Science, 43(12): 4498-4520(in Chinese with English abstract).
      Qi, X.P., Yang, J., Fan, X.G., et al., 2016. Age, Geochemical Characteristics and Tectonic Significance of Changshishan Ophiolite in Central East Kunlun Tectonic Mélange Belt along the East Section of East Kunlun Mountains. Geology in China, 43(3): 797-816(in Chinese with English abstract).
      Ren, J.H., Liu, Y.Q., Feng, Q., et al., 2009. LA-ICP-MS U-Pb Zircon Dating and Geochemical Characteristics of Diabase-Dykes from the Qingshuiquan Area, Eastern Kunlun Orogenic Belt. Acta Petrologica Sinica, 25(5): 1135-1145(in Chinese with English abstract).
      Sajona, F.G., Maury, R.C., Bellon, H., et al., 1996. High Field Strength Element Enrichment of Pliocene-Pleistocene Island Arc Basalts, Zamboanga Peninsula, Western Mindanao (Philippines). Journal of Petrology, 37(3): 693-726. https://doi.org/10.1093/petrology/37.3.693
      Sang, J.Z., Pei, X.Z., Li, R.B., et al., 2016. LA-ICP-MS Zircon U-Pb Dating of the Chahantaolegai Syenogranites in Xiangride Area of East Kunlun and Its Geological Significance. Geological Bulletin of China, 35(5): 700-710(in Chinese with English abstract).
      Schiano, P., Monzier, M., Eissen, J.P., et al., 2010. Simple Mixing as the Major Control of the Evolution of Volcanic Suites in the Ecuadorian Andes. Contributions to Mineralogy and Petrology, 160(2): 297-312. https://doi.org/10.1007/s00410-009-0478-2
      Song, S.G., Bi, H.Z., Qi, S.S., et al., 2018. HP-UHP Metamorphic Belt in the East Kunlun Orogen: Final Closure of the Proto-Tethys Ocean and Formation of the Pan-North-China Continent. Journal of Petrology, 59(11): 2043-2060. https://doi.org/10.1093/petrology/egy089
      Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 doi: 10.1144/GSL.SP.1989.042.01.19
      Sylvester, P.J., 1998. Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1-4): 29-44. https://doi.org/10.1016/S0024-4937(98)00024-3
      Tatsumi, Y., 1982. Origin of High-Magnesian Andesites in the Setouchi Volcanic Belt, Southwest Japan, Ⅱ. Melting Phase Relations at High Pressures. Earth and Planetary Science Letters, 60(2): 305-317. https://doi.org/10.1016/0012-821X(82)90009-7
      Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution, an Examination of the Geochemical Record Preserved in Sedimentary Rocks. Blackwell Scientific Publications, Oxford.
      Wang, B.Z., Pan, T., Ren, H.D., et al., 2021. Cambrian Qimantagh Island Arc in the East Kunlun Orogen: Evidences from Zircon U-Pb Ages, Lithogeochemistry and Hf Isotopes of High-Mg Andesite/Diorite from the Lalinggaolihe Area. Earth Science Frontiers, 28(1): 318-333(in Chinese with English abstract).
      Wang, K., Wang, L.X., Ma, C.Q., et al., 2020. Petrogenesis and Geological Implications of the Middle Triassic Garnet-Bearing Two-Mica Granite from Jialuhe Region, East Kunlun. Earth Science, 45(2): 400-418(in Chinese with English abstract).
      Wang, Q., Hao, L.L., Zhang, X.Z., et al., 2020. Adakitic Rocks at Convergent Plate Boundaries: Compositions and Petrogenesis. Scientia Sinica (Terrae), 50(12): 1845-1873(in Chinese). doi: 10.1360/SSTe-2020-0034
      Wang, W., Xiong, F.H., Ma, C.Q., et al., 2021. Petrogenesis of Triassic Suolagou Sanukitoid-Like Diorite in East Kunlun Orogen and Its Implications for Paleo-Tethyan Orogeny. Earth Science, 46(8): 2887-2902(in Chinese with English abstract).
      Wei, B., 2015. Study on the Geological Characteristic and Tectonic Attribute of the Ophiolite and Island-Arc-Type Igneous Rocks, Central Belt of East Kunlun (Eastern Section) (Dissertation). Chang'an University, Xi'an(in Chinese with English abstract).
      Wolf, M.B., London, D., 1994. Apatite Dissolution into Peraluminous Haplogranitic Melts: An Experimental Study of Solubilities and Mechanisms. Geochimica et Cosmochimica Acta, 58(19): 4127-4145. https://doi.org/10.1016/0016-7037(94)90269-0
      Yang, J.S., Robinson, P.T., Jiang, C.F., et al., 1996. Ophiolites of the Kunlun Mountains, China and Their Tectonic Implications. Tectonophysics, 258(1/2/3/4): 215-231. https://doi.org/10.1016/0040-1951(95)00199-9
      Zhang, J.Y., Ma, C.Q., Xiong, F.H., et al., 2014. Early Paleozoic High-Mg Diorite-Granodiorite in the Eastern Kunlun Orogen, Western China: Response to Continental Collision and Slab Break-off. Lithos, 210/211: 129-146. https://doi.org/10.1016/j.lithos.2014.10.003
      Zhang, Y.F., 2010. The Geological Characteristic, Age and Tectonic Setting of Kekesha Intrusive Rocks of Early Paleozoic in Dulan County of the East Kunlun Area (Dissertation). Chang'an University, Xi'an(in Chinese with English abstract).
      Zhang, Z.W., Wang, Y.L., Qian, B., et al., 2018. Metallogeny and Tectonomagmatic Setting of Ni-Cu Magmatic Sulfide Mineralization, Number I Shitoukengde Mafic-Ultramafic Complex, East Kunlun Orogenic Belt, NW China. Ore Geology Reviews, 96: 236-246. https://doi.org/10.1016/j.oregeorev.2018.04.027
      Zhao, F.F., Sun, F.Y., Liu, J.L., 2017. Zircon U-Pb Geochronology and Geochemistry of the Gneissic Granodiorite in Manite Area from East Kunlun, with Implications for Geodynamic Setting. Earth Science, 42(6): 927-940, 1044(in Chinese with English abstract).
      Zheng, Y.F., 2012. Metamorphic Chemical Geodynamics in Continental Subduction Zones. Chemical Geology, 328: 5-48. https://doi.org/10.1016/j.chemgeo.2012.02.005
      Zhou, B., Dong, Y.P., Zhang, F.F., et al., 2016. Geochemistry and Zircon U-Pb Geochronology of Granitoids in the East Kunlun Orogenic Belt, Northern Tibetan Plateau: Origin and Tectonic Implications. Journal of Asian Earth Sciences, 130: 265-281. https://doi.org/10.1016/j.jseaes.2016.08.011
      边千韬, Pospelov, I.I., 李惠民, 等, 2007. 青海省布青山早古生代末期埃达克岩的发现及其构造意义. 岩石学报, 23(5): 925-934. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200705008.htm
      陈国超, 裴先治, 李瑞保, 等, 2020. 东昆仑造山带东段晚古生代: 早中生代构造岩浆演化与成矿作用. 地学前缘, 27(4): 33-48. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202004004.htm
      陈加杰, 付乐兵, 魏俊浩, 等, 2016. 东昆仑沟里地区晚奥陶世花岗闪长岩地球化学特征及其对原特提斯洋演化的制约. 地球科学, 41(11): 1863-1882. doi: 10.3799/dqkx.2016.129
      陈有炘, 裴先治, 李瑞保, 等, 2013. 东昆仑东段纳赤台岩群变火山岩锆石U-Pb年龄、地球化学特征及其构造意义. 地学前缘, 20(6): 240-254. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201306032.htm
      冯建赟, 裴先治, 于书伦, 等, 2010. 东昆仑都兰可可沙地区镁铁-超镁铁质杂岩的发现及其LA-ICP-MS锆石U-Pb年龄. 中国地质, 37(1): 28-38. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201001006.htm
      李怀坤, 陆松年, 相振群, 等, 2006. 东昆仑中部缝合带清水泉麻粒岩锆石SHRIMP U-Pb年代学研究. 地学前缘, 13(6): 311-321. doi: 10.3321/j.issn:1005-2321.2006.06.034
      刘彬, 马昌前, 蒋红安, 等, 2013. 东昆仑早古生代洋壳俯冲与碰撞造山作用的转换: 来自胡晓钦镁铁质岩石的证据. 岩石学报, 29(6): 2093-2106. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201306018.htm
      刘战庆, 裴先治, 李瑞保, 等, 2011. 东昆仑南缘阿尼玛卿构造带布青山地区两期蛇绿岩的LA-ICP-MS锆石U-Pb定年及其构造意义. 地质学报, 85(2): 185-194. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201102005.htm
      潘桂棠, 肖庆辉, 陆松年, 等, 2009. 中国大地构造单元划分. 中国地质, 36(1): 1-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200901004.htm
      裴先治, 李瑞保, 李佐臣, 等, 2018. 东昆仑南缘布青山复合增生型构造混杂岩带组成特征及其形成演化过程. 地球科学, 43(12): 4498-4520. doi: 10.3799/dqkx.2018.124
      祁晓鹏, 杨杰, 范显刚, 等, 2016. 东昆仑东段东昆中构造混杂岩带长石山蛇绿岩年代学、地球化学特征及其构造意义. 中国地质, 43(3): 797-816. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201603008.htm
      任军虎, 柳益群, 冯乔, 等, 2009. 东昆仑清水泉辉绿岩脉地球化学及LA-ICP-MS锆石U-Pb定年. 岩石学报, 25(5): 1135-1145. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200905008.htm
      桑继镇, 裴先治, 李瑞保, 等, 2016. 东昆仑东段清水泉辉长岩体LA-ICP-MS锆石U-Pb年龄、地球化学特征及其构造意义. 地质通报, 35(5): 700-710. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201605007.htm
      王秉璋, 潘彤, 任海东, 等, 2021. 东昆仑祁漫塔格寒武纪岛弧: 来自拉陵高里河地区玻安岩型高镁安山岩/闪长岩锆石U-Pb年代学、地球化学和Hf同位素证据. 地学前缘, 28(1): 318-333. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202101032.htm
      王珂, 王连训, 马昌前, 等, 2020. 东昆仑加鲁河中三叠世含石榴石二云母花岗岩的成因及地质意义. 地球科学, 45(2): 400-418. doi: 10.3799/dqkx.2018.393
      王强, 郝露露, 张修政, 等, 2020. 汇聚板块边缘的埃达克质岩: 成分和成因. 中国科学(地球科学), 50(12): 1845-1873. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202012010.htm
      王巍, 熊富浩, 马昌前, 等, 2021. 东昆仑造山带索拉沟地区三叠纪赞岐质闪长岩的成因机制及其对古特提斯造山作用的启示. 地球科学, 46(8): 2887-2902. doi: 10.3799/dqkx.2020.270
      魏博, 2015. 东昆中构造带(东段)蛇绿岩与岛弧型侵入岩地质特征及构造属性研究(硕士学位论文). 西安: 长安大学.
      张亚峰, 2010. 东昆仑都兰可可沙地区早古生代侵入岩体地质特征、形成时代及构造环境(硕士学位论文). 西安: 长安大学.
      赵菲菲, 孙丰月, 刘金龙, 2017. 东昆仑马尼特地区片麻状花岗闪长岩锆石U-Pb年代学、地球化学及其构造背景. 地球科学, 42(6): 927-940, 1044. doi: 10.3799/dqkx.2017.073
    • 王秉章 附表1-4 锆石 U.doc
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)

      Article views (1659) PDF downloads(117) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return