• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Liu Haiyong, Tang Juxing, Zeng Qinggao, Hua Kang, Zhao Hongfei, Wang Yu, Yang Zong, 2022. Petrogenesis and Geological Significance of Early Cretaceous Granites in Tajigang Mining Area, Central Tibet. Earth Science, 47(4): 1217-1233. doi: 10.3799/dqkx.2021.100
    Citation: Liu Haiyong, Tang Juxing, Zeng Qinggao, Hua Kang, Zhao Hongfei, Wang Yu, Yang Zong, 2022. Petrogenesis and Geological Significance of Early Cretaceous Granites in Tajigang Mining Area, Central Tibet. Earth Science, 47(4): 1217-1233. doi: 10.3799/dqkx.2021.100

    Petrogenesis and Geological Significance of Early Cretaceous Granites in Tajigang Mining Area, Central Tibet

    doi: 10.3799/dqkx.2021.100
    • Received Date: 2021-05-24
      Available Online: 2022-04-29
    • Publish Date: 2022-04-25
    • Tajigang copper polymetallic ore is located in the south margin of southern Qiangtang terrane, providing an ideal window for understanding the tectonic-magmatic activities and mineralization of Bangong Co-Nujiang metallogenic belt. In this paper, it focuses on the granites in Tajigang mining area and reports their zircon U-Pb ages, geochemical and zircon Hf isotopic data. These granite rocks were dated as Early Cretaceous (120-118 Ma) and characterized by high SiO2, total alkali (Na2O+K2O), and low P2O5 contents, with aluminum saturation index (A/CNK) of 0.78-1.02, suggesting geochemical affinity to calc alkaline Ⅰ-type granite. Furthermore, the granites display positive εHf(t) values (+3.9-+7.2) with relatively young crustal model age (TDMC=717-926 Ma) and show similar Zr/Hf (26.88-38.65), Nb/Ta (7.01-13.61), Sm/Nd (0.17-0.21), and Nb/La (0.32-0.58) ratios to crust, indicating a magma source of juvenile igneous lower crust. Together with data from the recent literature, it proposes that the Tajigang granites formed in a collision setting of Lhasa and southern Qiangtang terranes. In addition, the Tajigang granites show similar geochemical and isotopic compositions with the regional simultaneous metallogenic related rocks which were derived by partial melting of juvenile lower crust. In general, the juvenile crust was enriched in Cu, Au and other elements. Thus, our research proposes that these widely exposed juvenile-crust derived granitic rocks of central Tibet have certain metallogenic conditions and are the key exploration direction for prospecting porphyry Cu-Au deposits in the future.

       

    • 致谢: 感谢武汉上谱分析科技有限责任公司的老师在样品分析测试过程中提供大量帮助,感谢审稿专家对本文提出的建设性修改意见和建议.
    • Chappell, B. W., Stephens, W. E., 1988. Origin of Infracrustal (Ⅰ-Type) Granite Magmas. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 79(2/3): 71-86. https://doi.org/10.1017/s0263593300014139
      Chen, G. R., Liu, H. F., Jiang, G. W., et al., 2004. Discovery of the Shamuluo Formation in the Central Segmentof the Bangong Co-Nujiang River Suture Zone, Tibet. Regional Geology of China, 23(2): 193-194(in Chinese with English abstract).
      Chen, Y., Zhu, D. C., Zhao, Z. D., et al., 2014. Slab Breakoff Triggered ca. 113 Ma Magmatism around Xainza Area of the Lhasa Terrane, Tibet. Gondwana Research, 26(2): 449-463. https://doi.org/10.1016/j.gr.2013.06.005
      Fan, J. J., 2016. Reconstructing the Late Mesozoic Closing Process of the Middle and West Segments of the Bangong-Nujiang Ocean in Space and Time(Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      Fan, J. J., Li, C., Xie, C. M., et al., 2014. Petrology, Geochemistry, and Geochronology of the Zhonggang Ocean Island, Northern Tibet: Implications for the Evolution of the Banggongco-Nujiang Oceanic Arm of the Neo-Tethys. International Geology Review, 56(12): 1504-1520. https://doi.org/10.1080/00206814.2014.947639
      Geng, Q. R., Zhang, Z., Peng, Z. M., et al., 2016. Jurassic-Cretaceous Granitoids and Related Tectono-Metallogenesis in the Zapug-Duobuza Arc, Western Tibet. Ore Geology Reviews, 77: 163-175. https://doi.org/10.1016/j.oregeorev.2016.02.018
      Hao, L. L., Wang, Q., Wyman, D. A., et al., 2016. Underplating of Basaltic Magmas and Crustal Growth in a Continental Arc: Evidence from Late Mesozoic Intermediate-Felsic Intrusive Rocks in Southern Qiangtang, Central Tibet. Lithos, 245: 223-242. https://doi.org/10.1016/j.lithos.2015.09.015
      Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012a. A "Wire" Signal Smoothing Device for Laser Ablation Inductively Coupled Plasma Mass Spectrometry Analysis. Spectrochimica Acta Part B: Atomic Spectroscopy, 78: 50-57. https://doi.org/10.1016/j.sab.2012.09.007
      Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012b. Improved In Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391. https://doi.org/10.1039/c2ja30078h
      Ingle, S., Weis, D., Frey, F. A., 2002. Indian Continental Crust Recovered from Elan Bank, Kerguelen Plateau (ODP Leg 183, Site 1137). Journal of Petrology, 43(7): 1241-1257. https://doi.org/10.1093/petrology/43.7.1241
      Jia, X. H., Wang, Q., Tang, G. J., 2009. A-Type Granites: Research Progress and Implications. Geotectonica et Metallogenia, 33(3): 465-480(in Chinese with English abstract).
      Kapp, P., DeCelles, P. G., Gehrels, G. E., et al., 2007. Geological Records of the Lhasa-Qiangtang and Indo-Asian Collisions in the Nima Area of Central Tibet. Geological Society of America Bulletin, 119(7/8): 917-933. https://doi.org/10.1130/b26033.1
      Kemp, A. I. S., Hawkesworth, C. J., Foster, G. L., et al., 2007. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon. Science, 315(5814): 980-983. https://doi.org/10.1126/science.1136154
      Li, G. M., Qin, K. Z., Li, J. X., et al., 2015. Cretaceous Magmatism and Metallogeny in the Bangong-Nujiang Metallogenic Belt, Central Tibet: Evidence from Petrogeochemistry, Zircon U-Pb Ages, and Hf-O Isotopic Compositions. Gondwana Research, 41: 110-127. https://doi.org/10.1016/j.gr.2015.09.006
      Li, X. H., Li, Z. X., Li, W. X., et al., 2007. U-Pb Zircon, Geochemical and Sr-Nd-Hf Isotopic Constraints on Age and Origin of Jurassic Ⅰ- and A-Type Granites from Central Guangdong, SE China: A Major Igneous Event in Response to Foundering of a Subducted Flat-Slab? Lithos, 96(1/2): 186-204. https://doi.org/10.1016/j.lithos.2006.09.018
      Li, Y., Zhang, S. Z., Li, F. Q., et al., 2020. Geochronology, Geochemistry and Petrogenesis of Late Jurassic Granitoids in Shiquanhe Area, Western Lhasa Block, Tibet. Earth Science, 45(8): 2846-2856(in Chinese with English abstract).
      Liao, L. G., Cao, S. H., Xiao, Y. B., et al., 2005. The Delineation and Significance of the Continental-Margin Volcanic-Magmatic Arc Zone in the Northern Part of the Bangong-Nujiang Suture Zone. Sedimentary Geology and Tethyan Geology, 25(1): 163-170(in Chinese with English abstract).
      Lin, B., Tang, J. X., Chen, Y. C., et al., 2017. Geochronology and Genesis of the Tiegelongnan Porphyry Cu(Au) Deposit in Tibet: Evidence from U-Pb, Re-Os Dating and Hf, S, and H-O Isotopes. Resource Geology, 67(1): 1-21. https://doi.org/10.1111/rge.12113
      Liu, H. Y., Yue, Y. Z., Dunzhu, W. D., et al., 2019. Petrogenesis and Geological Significance of Late Jurassic Volcanic Rocks in Mami Area, Central Tibetan Plateau. Earth Science, 44(7): 2368-2378(in Chinese with English abstract).
      Ludwig, K. R., 2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, California, 39.
      Ma, A. L., Hu, X. M., Kapp, P., et al., 2018. The Disappearance of a Late Jurassic Remnant Sea in the Southern Qiangtang Block (Shamuluo Formation, Najiangco Area): Implications for the Tectonic Uplift of Central Tibet. Palaeogeography, Palaeoclimatology, Palaeoecology, 506: 30-47. https://doi.org/10.1016/j.palaeo.2018.06.005
      Qu, X. M., Xin, H. B., Du, D. D., et al., 2012. Ages of Post-Collisional A-Type Granite and Constraints on the Closure of the Oceanic Basin in the Middle Segment of the Bangonghu-Nujiang Suture, the Tibetan Plateau. Geochimica, 41(1): 1-14(in Chinese with English abstract).
      Sun, J., Mao, J. W., Wang, J. X., et al., 2020. Timing of Cu-Au Mineralization in Nadun Cu-Au Deposit of Duolong District, Tibet, and Its Implication for Mineral Exploration. Mineral Deposits, 39(6): 1091-1102(in Chinese with English abstract).
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Sun, Z. M., 2015. Copper-Gold Mineralization and Metallogenic Regularity of Duolong Mineralization Area in Western Bangongco-Nujiang Metallogenic Belt, Tibet. Jilin University, Changchun(in Chinese with English abstract).
      Tang, J. X., Song, Y., Wang, Q., et al., 2016. Geological Characteristics and Exploration Model of the Tiegelongnan Cu(Au-Ag) Deposit: The First Ten Million Tons Metal Resources of a Porphyry-Epithermal Deposit in Tibet. Acta Geoscientica Sinica, 37(6): 663-690(in Chinese with English abstract).
      Tang, J. X., Sun, X. G., Ding, S., et al., 2014. Discovery of the Epithermal Deposit of Cu(Au-Ag) in the Duolong Ore Concentrating Area, Tibet. Acta Geoscientica Sinica, 35(1): 6-10(in Chinese with English abstract).
      Wang, Q., Lin, B., Tang, J. X., et al., 2018. Diagenesis, Lithogenesis and Geodynamic Setting of Intrusions in Senadong Area, Duolong District, Tibet. Earth Science, 43(4): 1125-1141(in Chinese with English abstract).
      Wang, W., Zhai, Q. G., Hu, P. Y., et al., 2021. Cretaceous Magmatic Rocks in the Nyima Area, North Tibet: Constraints for the Tectonic Evolution of the Bangong-Nujiang Suture Zone. Acta Petrologica Sinica, 37(2): 545-562(in Chinese with English abstract). doi: 10.18654/1000-0569/2021.02.13
      Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295-304. https://doi.org/10.1016/0012-821X(83)90211-X
      Wei, S. G., Song, Y., Tang, J. X., et al., 2017. Geochronology, Geochemistry, Sr-Nd-Hf Isotopic Compositions, and Petrogenetic and Tectonic Implications of Early Cretaceous Intrusions Associated with the Duolong Porphyry-Epithermal Cu-Au Deposit, Central Tibet. International Geology Review, 60(9): 1116-1139. https://doi.org/10.1080/00206814.2017.1369178
      Wei, S. G., Tang, J. X., Song, Y., et al., 2017. Zircons LA-MC-ICP-MS U-Pb Ages, Petrochemical, Petrological and Its Significance of the Potassic Monzonitic Granite Porphyry from the Duolong Ore-Concentrated District, Gaize County, Xizang(Tibet). Geological Review, 63(1): 189-206(in Chinese with English abstract).
      Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202
      Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220(in Chinese with English abstract).
      Yao, X. F., Tang, J. X., Li, Z. J., et al., 2012. Magma Origin of Two Plutons from Gaerqiong Copper-Gold Deposit and Its Geological Significance, Western Bangonghu-Nujiang Metallogenic Belt, Tibet: Implication from Hf Isotope Characteristics. Journal of Jilin University (Earth Science Edition), 42(S2): 188-197(in Chinese with English abstract).
      Zhang, H. R., Hou, Z. Q., 2021. Comparisons of the Collision Processes and Related Metallogenesis of Zagros and Himalaya Orogens. Journal of Earth Sciences and Environment, 43(3): 436-448(in Chinese with English abstract).
      Zhang, Z., Geng, Q. R., Peng, Z. M., et al., 2015. Petrogenesis of Fuye Pluton in Rutog, Tibet: Zircon U-Pb Dating and Hf Isotopic Constraints. Geological Bulletin of China, 34(Z1): 262-273(in Chinese with English abstract).
      Zhou, Y. Z., 2011. Progress Made in A-Type Granite Study and Discussion on Some Issues. Geology of Anhui, 21(3): 169-175(in Chinese with English abstract).
      Zhu, D. C., Li, S. M., Cawood, P. A., et al., 2016. Assembly of the Lhasa and Qiangtang Terranes in Central Tibet by Divergent Double Subduction. Lithos, 245: 7-17. https://doi.org/10.1016/j.lithos.2015.06.023
      Zong, K. Q., Klemd, R., Yuan, Y., et al., 2017. The Assembly of Rodinia: The Correlation of Early Neoproterozoic (ca. 900 Ma) High-Grade Metamorphism and Continental Arc Formation in the Southern Beishan Orogen, Southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290: 32-48. https://doi.org/10.1016/j.precamres.2016.12.010
      陈国荣, 刘鸿飞, 蒋光武, 等, 2004. 西藏班公湖-怒江结合带中段沙木罗组的发现. 地质通报, 23(2): 193-194. doi: 10.3969/j.issn.1671-2552.2004.02.015
      范建军, 2016. 班公湖-怒江洋中西段晚中生代汇聚消亡时空重建(博士学位论文). 长春: 吉林大学.
      贾小辉, 王强, 唐功建, 2009. A型花岗岩的研究进展及意义. 大地构造与成矿学, 33(3): 465-480. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200903020.htm
      李勇, 张士贞, 李奋其, 等, 2020. 西藏拉萨地块西段狮泉河地区晚侏罗世花岗岩年代学、地球化学与岩石成因. 地球科学, 45(8): 2846-2856. doi: 10.3799/dqkx.2020.102
      廖六根, 曹圣华, 肖业斌, 等, 2005. 班公湖-怒江结合带北侧陆缘火山-岩浆弧带的厘定及其意义. 沉积与特提斯地质, 25(1): 163-170. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD2005Z1029.htm
      刘海永, 岳鋆璋, 顿珠旺堆, 等, 2019. 青藏高原中部麻米地区晚侏罗世火山岩岩石成因及其地质意义. 地球科学, 44(7): 2368-2378. doi: 10.3799/dqkx.2018.382
      曲晓明, 辛洪波, 杜德道, 等, 2012. 西藏班公湖-怒江缝合带中段碰撞后A型花岗岩的时代及其对洋盆闭合时间的约束. 地球化学, 41(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201201002.htm
      孙嘉, 毛景文, 王佳新, 等, 2020. 西藏多龙矿集区拿顿铜金矿床成矿时代的厘定及其找矿指示意义. 矿床地质, 39(6): 1091-1102. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202006009.htm
      孙振明, 2015. 西藏班-怒成矿带西段多龙矿集区铜金成矿作用与成矿规律(硕士学位论文). 长春: 吉林大学.
      唐菊兴, 宋扬, 王勤, 等, 2016. 西藏铁格隆南铜(金银)矿床地质特征及勘查模型: 西藏首例千万吨级斑岩-浅成低温热液型矿床. 地球学报, 37(6): 663-690. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201606003.htm
      唐菊兴, 孙兴国, 丁帅, 等, 2014. 西藏多龙矿集区发现浅成低温热液型铜(金银)矿床. 地球学报, 35(1): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201401002.htm
      王勤, 林彬, 唐菊兴, 等, 2018. 多龙矿集区色那东岩体年龄、成因与动力学背景. 地球科学, 43(4): 1125-1141. doi: 10.3799/dqkx.2017.613
      王伟, 翟庆国, 胡培远, 等, 2021. 藏北尼玛地区白垩纪岩浆岩对班公湖-怒江缝合带演化的制约. 岩石学报, 37(2): 545-562. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202102013.htm
      韦少港, 唐菊兴, 宋扬, 等, 2017. 西藏改则多龙矿集区地堡那木岗矿床钾玄质二长花岗斑岩锆石LA-MC-ICP-MS U-Pb年龄、地球化学特征及其地质意义. 地质论评, 63(1): 189-206. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201701021.htm
      吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm
      姚晓峰, 唐菊兴, 李志军, 等, 2012. 班怒带西段尕尔穷铜金矿两套侵入岩源区及其地质意义: 来自Hf同位素特征的指示. 吉林大学学报(地球科学版), 42(S2): 188-197. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ2012S2022.htm
      张洪瑞, 侯增谦, 2021. 大陆碰撞造山与成矿过程: 扎格罗斯和喜马拉雅造山带对比. 地球科学与环境学报, 43(3): 436-448. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202103007.htm
      张璋, 耿全如, 彭智敏, 等, 2015. 西藏日土地区弗野岩体的成因: 锆石U-Pb年龄及Hf同位素约束. 地质通报, 34(Z1): 262-273. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2015Z1004.htm
      周宇章, 2011. A型花岗岩研究进展与问题讨论. 安徽地质, 21(3): 169-175. https://www.cnki.com.cn/Article/CJFDTOTAL-AHDZ201103002.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(3)

      Article views (1262) PDF downloads(97) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return