Citation: | Liu Jie, Yuan Lingling, Yang Zhili, 2022. Geochronology and Geochemistry of Mesozoic Mafic Intrusive Rocks in Zhongtiao Mountain Area: Characterizing Lithospheric Mantle of Southern North China Craton. Earth Science, 47(4): 1271-1294. doi: 10.3799/dqkx.2021.104 |
Ayers, J., 1998. Trace Element Modeling of Aqueous Fluid-Peridotite Interaction in the Mantle Wedge of Subduction Zones. Contributions to Mineralogy and Petrology, 132(4): 390-404. https://doi.org/10.1007/s004100050431
|
Chen, L., Zhao, Z.F., Zheng, Y.F., 2014. Origin of Andesitic Rocks: Geochemical Constraints from Mesozoic Volcanics in the Luzong Basin, South China. Lithos, 190/191: 220-239. https://doi.org/10.1016/j.lithos.2013.12.011
|
Dai, L.Q., Zhao, Z.F., Zheng, Y.F., 2015. Tectonic Development from Oceanic Subduction to Continental Collision: Geochemical Evidence from Postcollisional Mafic Rocks in the Hong'an-Dabie Orogens. Gondwana Research, 27(3): 1236-1254. https://doi.org/10.1016/j.gr.2013.12.005
|
Deng, J., Liu, X., Wang, Q., et al., 2017. Isotopic Characterization and Petrogenetic Modeling of Early Cretaceous Mafic Diking-Lithospheric Extension in the North China Craton, Eastern Asia. GSA Bulletin, 129(11-12): 1379-1407. https://doi.org/10.1130/b31609.1 doi: 10.1130/B31609.1
|
Ding, L., Ma, C., Li, J., et al., 2016. Geochronological, Geochemical and Mineralogical Constraints on the Petrogenesis of Appinites from the Laoniushan Complex, Eastern Qinling, Central China. Geochemistry, 76(4): 579-595. https://doi.org/10.1016/j.chemer.2016.10.002
|
Duggen, S., Hoernle, K., van den Bogaard, P., et al., 2005. Post-Collisional Transition from Subduction- to Intraplate-Type Magmatism in the Westernmost Mediterranean: Evidence for Continental-Edge Delamination of Subcontinental Lithosphere. Journal of Petrology, 46(6): 1155-1201. https://doi.org/10.1093/petrology/egi013
|
Eggins, S.M., Woodhead, J.D., Kinsley, L.P.J., et al., 1997. A Simple Method for the Precise Determination of ≥40 Trace Elements in Geological Samples by ICPMS Using Enriched Isotope Internal Standardisation. Chemical Geology, 134(4): 311-326. http://dx.doi.org/10.1016/S0009-2541(96)00100-3
|
Gao, S., Rudnick, R., Carlson, R., et al., 2003. Removal of Lithospheric Mantle in the North China Craton: Re-Os Isotopic Evidence for Coupled Crust-Mantle Growth. Earth Science Frontiers, 10(3): 61-67(in Chinese with English abstract).
|
Gao, S., Zhang, J., Xu, W., et al., 2009. Delamination and Destruction of the North China Craton. Chinese Science Bulletin, 54(19): 3367-3378. https://doi.org/10.1007/s11434-009-0395-9
|
Griffin, W.L., Zhang, A., O'Reilly, S.Y., et al., 1998. Phanerozoic Evolution of the Lithosphere Beneath the Sino-Korean Craton. Mantle Dynamics and Plate Interactions in East Asia Geodynamics, 27: 107-126. https://doi.org/10.1029/GD027p0107
|
Guo, F., Fan, W., Li, C., et al., 2014. Hf-Nd-O Isotopic Evidence for Melting of Recycled Sediments beneath the Sulu Orogen, North China. Chemical Geology, 381: 243-258. https://doi.org/10.1016/j.chemgeo.2014.04.028
|
Halama, R., Marks, M., Brügmann, G., et al., 2004. Crustal Contamination of Mafic Magmas: Evidence from a Petrological, Geochemical and Sr-Nd-Os-O Isotopic Study of the Proterozoic Isortoq Dike Swarm, South Greenland. Lithos, 74(3-4): 199-232. https://doi.org/10.1016/j.lithos.2004.03.004.
|
Hirose, K., 1997. Melting Experiments on Lherzolite KLB-1 under Hydrous Conditions and Generation of High-Magnesian Andesitic Melts. Geology, 25(1) 42-44. https://doi.org/10.1130/0091-7613(1997)025<0042:MEOLKU>2.3.CO;2 doi: 10.1130/0091-7613(1997)025<0042:MEOLKU>2.3.CO;2
|
Hofmann, A.W., 1988. Chemical Differentiation of the Earth: The Relationship between Mantle, Continental Crust, and Oceanic Crust. Earth and Planetary Science Letters, 90(3): 297-314. https://doi.org/10.1016/0012-821X(88)90132-X
|
Hofmann, A.W., Jochum, K.P., Seufert, M., et al., 1986. Nb and Pb in Oceanic Basalts: New Constraints on Mantle Evolution. Earth and Planetary Science Letters, 79(1-2): 33-45. https://doi.org/10.1016/0012-821X(86)90038-5
|
Holloway, J.R., Burnham, C.W., 1972. Melting Relations of Basalt with Equilibrium Water Pressure less than Total Pressure. Journal of Petrology, 13(1): 1-29. https://doi.org/10.1093/petrology/13.1.1
|
Hong, L., Zhang, Y., Xu, Y., et al., 2017. Hydrous Orthopyroxene-Rich Pyroxenite Source of the Xinkailing High Magnesium Andesites, Western Liaoning: Implications for the Subduction-Modified Lithospheric Mantle and the Destruction Mechanism of the North China Craton. Lithos, 282-283: 10-22. https://doi.org/10.1016/j.lithos.2017.02.014
|
Jiang, C.Y., An, S.Y., 1984. On Chemical Characteristics of Calcic Amphiboles from Igneous Rocsk and Their Petrogenesis Significance. Journal of Mineralogy and Petrology, 4(3): 1-9(in Chinese with English abstract).
|
Jiang, Y.H., Jiang, S.Y., Zhao, K.D., et al., 2005. SHRIMP Zircon U-Pb Ages of Lamprophyres in the Liaodong Peninsula and Their Constraints on the Beginning Time of Lithospheric Thinning in Eastern China. Chinese Science Bulletin, 50(19): 2161-2168 (in Chinese).
|
Kamber, B.S., Greig, A., Schoenberg, R., et al., 2003. A Refined Solution to Earth's Hidden Niobium: Implications for Evolution of Continental Crust and Mode of Core Formation. Precambrian Research, 126(3-4): 289-308. http://doi.org/10.1016/S0301-9268(03)00100-1
|
Kelemen, P.B., Hanghøj, K., Greene, A.R., 2007. One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust. Treatise on Geochemistry. Elsevier, Amsterdam, 1-70. https://doi.org/10.1016/b0-08-043751-6/03035-8
|
Klemme, S., O'Neill, H.S., 2000. The Near-Solidus Transition from Garnet Lherzolite to Spinel Lherzolite. Contributions to Mineralogy and Petrology, 138(3): 237-248. https://doi.org/10.1007/s004100050560
|
Kusky, T. M., Windley, B. F., Wang, L., et al., 2014. Flat Slab Subduction, Trench Suction, and Craton Destruction: Comparison of the North China, Wyoming, and Brazilian Cratons. Tectonophysics, 630: 208-221. https://doi.org/10.1016/j.tecto.2014.05.028.
|
Li, B.P., Greig, A., Zhao, J.X., et al., 2005. ICP-MS Trace Element Analysis of Song Dynasty Porcelains from Ding, Jiexiu and Guantai Kilns, North China. Journal of Archaeological Science, 32(2): 251-259. http://dx.doi.org/10.1016/j.jas.2004.09.004
|
Li, C, F., Chu, Z.Y., Guo, J.H., et al., 2015. A Rapid Single Column Separation Scheme for High Precision Sr-Nd-Pb Isotopic Analysis in Geological Samples Using Thermal Ionization Mass Spectrometry. Analytical Methods. 7(11): 4793-4802. doi: 10.1039/C4AY02896A
|
Li, R., Yang, J.H., Wang, H., et al., 2020. Triassic Lithospheric Modification of the Northern North China Craton: Evidences from the Composite Kalaqin Batholith and Ultramafic-Mafic Heilihe Intrusive Complex in Inner Mongolia. Lithos, 362-363: 105501. https://doi.org/10.1016/j.lithos.2020.105501
|
Li, S.G., Xiao, Y.L., Liou, D.L., et al., 1993. Collision of the North China and Yangtse Blocks and Formation of Coesite-Bearing Eclogites: Timing and Processes. Chemical Geology, 109(1/2/3/4): 89-111. https://doi.org/10.1016/0009-2541(93)90063-O
|
Li, X.H., Liu, Y., Li, Q.Y., et al., 2009. Precise Determination of Phanerozoic Zircon Pb/Pb Age by Multicollector SIMS without External Standardization. Geochemistry, Geophysics, Geosystems, 10(4): Q04010. https://doi.org/10.1029/2009GC002400
|
Liu, X., Fan, H.R., Qiu, Z.J., et al., 2015. Formation Ages of the Jiangxian and Zhongtiao Groups in the Zhongtiao Mountain Region, North China Craton: Insights from SIMS U-Pb Dating on Zircons of Intercalated Plagioclase Amphibolites. Acta Petrologica Sinica, 31(6): 1564-1572(in Chinese with English abstract).
|
Liu, S., Hu, R., Gao, S., et al., 2008. U-Pb Zircon Age, Geochemical and Sr-Nd-Pb-Hf Isotopic Constraints on Age and Origin of Alkaline Intrusions and Associated Mafic Dikes from Sulu Orogenic Belt, Eastern China. Lithos, 106(3-4): 365-379. https://doi.org/10.1016/j.lithos.2008.09.004
|
Liu, S., Hu, R., Gao, S., et al., 2012. Geochemical and Isotopic Constraints on the Age and Origin of Mafic Dikes from Eastern Shandong Province, Eastern North China Craton. International Geology Review, 54(12): 1389-1400. https://doi.org/10.1080/00206814.2011.641732
|
Liu, Y., Wei, J., Zhang, D., et al., 2020. Early Cretaceous Wulong Intermediate-Mafic Dike Swarms in the Liaodong Peninsula: Implications for Rapid Lithospheric Delamination of the North China Craton. Lithos, 362-363: 105473. https://doi.org/10.1016/j.lithos.2020.105473
|
Ma, L., Jiang, S.Y., Hou, M.L., et al., 2014. Geochemistry of Early Cretaceous Calc-Alkaline Lamprophyres in the Jiaodong Peninsula: Implication for Lithospheric Evolution of the Eastern North China Craton. Gondwana Research, 25(2): 859-872. https://doi.org/10.1016/j.gr.2013.05.012.
|
Ma, X., Chen, B., Niu, X.L., 2009. Genesis of the Late Paleozoic Dongwanzi Pluton, Eastern Hebei. Acta Petrologica Sinica, 25(8): 1975-1988(in Chinese with English abstract).
|
Middlemost, E., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
|
Paton, C., Woodhead, J.D., Hellstrom, J.C., et al., 2010. Improved Laser Ablation U-Pb Zircon Geochronology through Robust Downhole Fractionation Correction. Geochemistry, Geophysics, Geosystems, 11(3): Q0AA06. https://doi.org/10.1029/2009GC002618
|
Peccerillo, A., Taylor, S.R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. doi: 10.1007/BF00384745
|
Pei, F.P., Xu, W.L., Wang, Q.H., et al., 2004. Mesozoic Basalt and Mineral Chemistry of the Mantle-Derived Xenocrysts in Feixian, Western Shandong, China: Constraints on Nature of Mesozoic Lithospheric Mantle. Geological Journal of China Universities, 10(1): 88-97(in Chinese with English abstract).
|
Polat, A., Hofmann, A.W., Rosing, M.T., 2002. Boninite-Like Volcanic Rocks in the 3.7-3.8 Ga Isua Greenstone Belt, West Greenland: Geochemical Evidence for Intra-Oceanic Subduction Zone Processes in the Early Earth. Chemical Geology, 184(3/4): 231-254. https://doi.org/10.1016/S0009-2541(01)00363-1
|
Princivalle, F., De Min, A., Lenaz, D., et al., 2014. Ultramafic Xenoliths from Damaping (Hannuoba Region, NE China): Petrogenetic Implications from Crystal Chemistry of Pyroxenes, Olivine and Cr-Spinel and Trace Element Content of Clinopyroxene. Lithos, 188: 3-14. https://doi.org/10.1016/j.lithos.2013.10.013
|
Quan, Y.K., Yang, D.B., Mu, M.S., et al., 2020. Tectonic Evolution of the Northeastern North China Craton: Constraints from Geochronology and Sr-Nd-Hf-O Isotopic Data from Late Triassic Intrusive Rocks on Liaodong Peninsula, NE China. Lithos, 362-363: 105489. https://doi.org/10.1016/j.lithos.2020.105489
|
Rudnick, R.L., Gao, S., 2003. Composition of the Continental Crust. Treatise on Geochemistry. Elsevier, Amsterdam. https://doi.org/10.1016/b0-08-043751-6/03016-4
|
Shao, J.A., Han, Q.J., Zhang, L.Q., et al., 1999. Two Kinds of Vertical Accretion of the Continental Crust: An Example of the Da Hinggan Mts. Acta Petrologica Sinica, 15(4): 600-606(in Chinese with English abstract).
|
Shao, J.A., Tian, W., Zhang, J.H., 2015. Early Permian Cumulates in Northern Margin of North China Craton and Their Tectonic Significances. Earth Science, 40(9): 1441-1457(in Chinese with English abstract).
|
Sisson, T.W., Grove, T.L., 1993. Experimental Investigations of the Role of H2O in Calc-Alkaline Differentiation and Subduction Zone Magmatism. Contributions to Mineralogy and Petrology, 113(2): 143-166. https://doi.org/10.1007/BF00283225.
|
Sláma, J., Košler, J., Condon, D.J., et al., 2008. Plešovice Zircon: A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chemical Geology, 249(1): 1-35. http://doi.org/10.1016/j.chemgeo.2007.11.005
|
Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
|
Sun, J.F., Yang, J.H., 2009. Early Cretaceous A-Type Granites in the Eastern North China Block with Relation to Destruction of the Craton. Earth Science, 34(1): 137-147(in Chinese with English abstract).
|
Sun, J.F., Yang, J.H., 2013. Mesozoic Magmatism Related to Decratonization of the North China Craton. Acta Petrologica et Mineralogica, 32(5): 577-592(in Chinese with English abstract).
|
Tang, Y.J., Ying, J.F., Zhao, Y.P., et al., 2021. Nature and Secular Evolution of the Lithospheric Mantle beneath the North China Craton. Science China Earth Sciences. https://doi.org/10.1007/s11430-020-9737-4 (in Chinese)
|
Wang, W., Xu, W.L., Ji, W.Q., et al., 2006. Late Mesozoic and Paleogene Basalts and Deep-Derived Xenocrysts in Eastern Liaoning Province, China: Constraints on Nature of Lithospheric Mantle. Geological Journal of China Universities, 12(1): 30-40(in Chinese with English abstract).
|
Weyer, S., Münker, C., Rehkämper, M., et al., 2002. Determination of Ultra-Low Nb, Ta, Zr and Hf Concentrations and the Chondritic Zr/Hf and Nb/Ta Ratios by Isotope Dilution Analyses with Multiple Collector ICP-MS. Chemical Geology, 187(3): 295-313. https://doi.org/10.1016/S0009-2541(02)00129-8
|
Wu, F., Lin, J., Wilde, S., et al., 2005. Nature and Significance of the Early Cretaceous Giant Igneous Event in Eastern China. Earth and Planetary Science Letters, 233(1-2): 103-119. https://doi.org/10.1016/j.epsl.2005.02.019
|
Xu, W., Yang, D., Shan, G., et al., 2010. Geochemistry of Peridotite Xenoliths in Early Cretaceous High-Mg# Diorites from the Central Orogenic Block of the North China Craton: The Nature of Mesozoic Lithospheric Mantle and Constraints on Lithospheric Thinning. Chemical Geology, 270(1-4): 257-273. https://doi.org/10.1016/j.chemgeo.2009.12.006
|
Xu, W.L., Wang, Q.H., Wang, D.Y., et al., 2004. Mesozoic Lithospheric Thinning Process and Mechanism in the Eastern North China Craton: Evidence from Mesozoic Igneous Rocks and Deep-Source Xenoliths. Earth Science Frontiers, 11(3): 9(in Chinese with English abstract).
|
Xu, Y.G., Li, H.Y., Pang, C.J., et al., 2009. On the Timing and Duration of the Destruction of the North China Craton. Science Bulletin, 54(19): 3379-3396. https://doi.org/10.1007/s11434-009-0346-5
|
Yan, J., Chen, J.F., Xie, Z., et al., 2003. Slow-Source Xenoliths in Late Cretaceous Basalts in Eastern Shandong: New Evidence for Time Constraints on Lithospheric Thinning in Eastern China. Chinese Science Bulletin, 48(14): 1570-1574(in Chinese). doi: 10.1360/csb2003-48-14-1570
|
Yan, Q.R., Wang, Z.Q., Yan, Z., et al., 2007. SHRIMP Analyses for Ophiolitic-Mafic Blocks in the Kangxian-Mianxian Section of the Mianxian-Lueyang Melange: Their Geological Implications. Geological Review, 53(6): 755-764(in Chinese with English abstract).
|
Yang, H.T., Yang, D.B., Mu, M.S., et al., 2019. Sr-Nd-Hf Isotopic Compositions of Lamprophyres in Western Shandong, China: Implications for the Nature of the Early Cretaceous Lithospheric Mantle beneath the Eastern North China Craton. Lithos, 336-337: 1-13. https://doi.org/10.1016/j.lithos.2019.03.030
|
Yang, J.H., Sun, J.F., Chen, F., et al., 2007a. Sources and Petrogenesis of Late Triassic Dolerite Dikes in the Liaodong Peninsula: Implications for Post-Collisional Lithosphere Thinning of the Eastern North China Craton. Journal of Petrology, 48(10): 1973-1997. https://doi.org/10.1093/petrology/egm046
|
Yang, J.H., Wu, F.Y., Wilde, S.A., et al., 2007b. Petrogenesis of Late Triassic Granitoids and Their Enclaves with Implications for Post-Collisional Lithospheric Thinning of the Liaodong Peninsula, North China Craton. Chemical Geology, 242(1-2): 155-175. https://doi.org/10.1016/j.chemgeo.2007.03.007
|
Zhang, H.F., Min, S., Zhou, X.H., et al., 2002. Mesozoic Lithosphere Destruction beneath the North China Craton: Evidence from Major-, Trace-Element and Sr-Nd-Pb Isotope Studies of Fangcheng Basalts. Contributions to Mineralogy and Petrology, 144(2): 241-254. https://doi.org/10.1007/s00410-002-0395-0
|
Zhang, H.F., Ying, J.F., Xu, P., et al., 2004. Mantle Olivine Xenoliths from Mesozoic Basalts in North China: Implications for Lithospheric Mantle Replacement Processes. Chinese Science Bulletin, 49(8): 784-789(in Chinese). doi: 10.1360/csb2004-49-8-784
|
Zhang, S.H., Zhao, Y., Davis, G.A., et al., 2014. Temporal and Spatial Variations of Mesozoic Magmatism and Deformation in the North China Craton: Implications for Lithospheric Thinning and Decratonization. Earth-Science Reviews, 131: 49-87. https://doi.org/10.1016/j.earscirev.2013.12.004
|
Zhao, G.C., Cawood, P.A., Wilde, S.A., et al., 2000. Metamorphism of Basement Rocks in the Central Zone of the North China Craton: Implications for Paleoproterozoic Tectonic Evolution. Precambrian Research, 103(1/2): 55-88. https://doi.org/10.1016/S0301-9268(00)00076-0
|
Zhao, B., Wang, D.H., Hou, K.J., et al., 2012. Isochronology Study on Sushui Complex in Zhongtiao Mountains and Its Geological Significance. Journal of Earch Sciences and Environment, 34(1): 1-8(in Chinese with English abstract).
|
Zhao, Z., Liang, S., Santosh, M., et al., 2020. Lithospheric Extension Associated with Slab Rollback: Insights from Early Cretaceous Magmatism in the Southern Segment of Tan-Lu Fault Zone, Central-Eastern China. Lithos, 362-363. https://doi.org/10.1016/j.lithos.2020.105487
|
Zhao, Z.F., Dai, L.Q., Zheng, Y.F., 2015. Two Types of the Crust-Mantle Interaction in Continental Subduction Zones. Scientia Sinica (Terrae), 58(8): 1269-1283 (in Chinese).
|
Zheng, Y. F., Xu, Z., Zhao, Z. F., et al., 2018. Mesozoic Mafic Magmatism in North China: Implications for Thinning and Destruction of Cratonic Lithosphere. Science China Earth Sciences, 61(4): 353-385(in Chinese). doi: 10.1007/s11430-017-9160-3
|
Zheng, J.P., Lu, F.X., Griffin, W., et al., 2006. Lithospheric Thinning Accompanying Mantle Lateral Spreading, Erosion and Replacement beneath the Eastern Part of North China: Evidence from Peridotites. Earth Science Frontiers, 13(2): 76-85(in Chinese with English abstract).
|
Zheng, J.P., Dai, H.K., 2018. Mantle Replacement in Eastern North China Caused by Plate Subduction and Retracement in the Western Pacific, Resulting in Intracontinental Basin-Mountain Coupling. Science China Earth Sciences, 48: 436-456(in Chinese).
|
Zheng, T., Zhao, L., Zhu, R.X., 2009. New Evidence from Seismic Imaging for Subduction during Assembly of the North China Craton. Geology, 37(5): 395-398. https://doi.org/10.1130/g25600a.1 doi: 10.1130/G25600A.1
|
Zheng, Y.F., Chen, Y.X., Dai, L.Q., et al., 2015. Developing Plate Tectonics Theory from Oceanic Subduction Zones to Collisional Orogens. Scientia Sinica (Terrae), 45(6): 711-735(in Chinese). doi: 10.1360/zd-2015-45-6-711
|
Zheng, Y.F., Wu, F.Y., 2009. Growth and Reworking of Cratonic Lithosphere. Chinese Science Bulletin, 54(14): 1945-1949(in Chinese). doi: 10.1360/csb2009-54-14-1945
|
Zheng, Y.F., Xu, Z., Zhao, Z.F., et al., 2018. Mesozoic Mafic Magmatism and Craton Thinning and Destruction in North China. Science China Earth Sciences, 48: 379-414(in Chinese).
|
高山, Rudnick, R.L., Carlson, R.W., et al., 2003. 华北克拉通岩石圈地幔置换作用和壳幔生长耦合的Re-Os同位素证据. 地学前缘, 10(3): 61-67. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200303006.htm
|
姜常义, 安三元, 1984. 论火成岩中钙质角闪石的化学组成特征及其岩石学意义. 矿物岩石, 4(3): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS198403000.htm
|
姜耀辉, 蒋少涌, 赵葵东, 等, 2005. 辽东半岛煌斑岩SHRIMP锆石U-Pb年龄及其对中国东部岩石圈减薄开始时间的制约. 科学通报, 50(19): 2161-2168. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200519016.htm
|
刘玄, 范宏瑞, 邱正杰, 等, 2015. 中条山地区绛县群和中条群沉积时限: 夹层斜长角闪岩SIMS锆石U-Pb年代学证据. 岩石学报, 31(6): 1564-1572. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201506006.htm
|
马旭, 陈斌, 牛晓露, 2009. 冀东晚古生代东湾子岩体的岩石成因研究. 岩石学报, 25(8): 1975-1988. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200908023.htm
|
裴福萍, 许文良, 王清海, 等, 2004. 鲁西费县中生代玄武岩及幔源捕掳晶的矿物化学: 对岩石圈地幔性质的制约. 高校地质学报, 10(1): 88-97. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200401007.htm
|
邵济安, 韩庆军, 张履桥, 等, 1999. 陆壳垂向增生的两种方式: 以大兴安岭为例. 岩石学报, 15(4): 600-606. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB199904013.htm
|
邵济安, 田伟, 张吉衡, 2015. 华北克拉通北缘早二叠世堆晶岩及其构造意义. 地球科学, 40(9): 1441-1457. doi: 10.3799/dqkx.2015.131
|
孙金凤, 杨进辉, 2009. 华北东部早白垩世A型花岗岩与克拉通破坏. 地球科学, 34(1): 137-147. doi: 10.3321/j.issn:1000-2383.2009.01.013
|
孙金凤, 杨进辉, 2013. 华北中生代岩浆作用与去克拉通化. 岩石矿物学杂志, 32(5): 577-592. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201305003.htm
|
汤艳杰, 英基丰, 赵月鹏, 等, 2021. 华北克拉通岩石圈地幔特征与演化过程. 中国科学: 地球科学, https://doi.org/10.1360/SSTe-2020-0303 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202109006.htm
|
王微, 许文良, 纪伟强, 等, 2006. 辽东中生代晚期和古近纪玄武岩及深源捕虏晶: 对岩石圈地幔性质的制约. 高校地质学报, 12(1): 30-40. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200601005.htm
|
许文良, 王清海, 王冬艳, 等, 2004. 华北克拉通东部中生代岩石圈减薄的过程与机制: 中生代火成岩和深源捕虏体证据. 地学前缘, 11(3): 9. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200403040.htm
|
闫峻, 陈江峰, 谢智, 等, 2003. 鲁东晚白垩世玄武岩中的幔源捕虏体: 对中国东部岩石圈减薄时间制约的新证据. 科学通报, 48(14): 1570-1574. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200314017.htm
|
闫全人, 王宗起, 闫臻, 等, 2007. 秦岭勉略构造混杂带康县: 勉县段蛇绿岩块-铁镁质岩块的SHRIMP年代及其意义. 地质论评, 53(6): 755-764. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200706010.htm
|
张宏福, 英基丰, 徐平, 等, 2004. 华北中生代玄武岩中地幔橄榄石捕虏晶: 对岩石圈地幔置换过程的启示. 科学通报, 49(8): 784-789. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200408014.htm
|
赵斌, 王登红, 侯可军, 等, 2012. 中条山涑水杂岩的同位素年代学研究及其地质意义. 地球科学与环境学报, 34(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201201003.htm
|
赵子福, 戴立群, 郑永飞, 2015. 大陆俯冲带两类壳幔相互作用. 中国科学: 地球科学, 45(7): 900-915. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201507002.htm
|
郑建平, 路凤香, Griffin, W.L., 等, 2006. 华北东部橄榄岩与岩石圈减薄中的地幔伸展和侵蚀置换作用. 地学前缘, 13(2): 76-85. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200602008.htm
|
郑建平, 戴宏坤, 2018. 西太平洋板片俯冲与后撤引起华北东部地幔置换并导致陆内盆-山耦合. 中国科学: 地球科学, 48: 436-456. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201804004.htm
|
郑永飞, 陈伊翔, 戴立群, 等, 2015. 发展板块构造理论: 从洋壳俯冲带到碰撞造山带. 中国科学: 地球科学, 45(6): 711-735. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201506001.htm
|
郑永飞, 吴福元, 2009. 克拉通岩石圈的生长和再造. 科学通报, 54(14): 1945-1949. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200914002.htm
|
郑永飞, 徐峥, 赵子福, 等, 2018. 华北中生代镁铁质岩浆作用与克拉通减薄和破坏. 中国科学: 地球科学, 48: 379-414. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201804002.htm
|
![]() |
![]() |