• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 4
    Apr.  2022
    Turn off MathJax
    Article Contents
    Liu Jie, Yuan Lingling, Yang Zhili, 2022. Geochronology and Geochemistry of Mesozoic Mafic Intrusive Rocks in Zhongtiao Mountain Area: Characterizing Lithospheric Mantle of Southern North China Craton. Earth Science, 47(4): 1271-1294. doi: 10.3799/dqkx.2021.104
    Citation: Liu Jie, Yuan Lingling, Yang Zhili, 2022. Geochronology and Geochemistry of Mesozoic Mafic Intrusive Rocks in Zhongtiao Mountain Area: Characterizing Lithospheric Mantle of Southern North China Craton. Earth Science, 47(4): 1271-1294. doi: 10.3799/dqkx.2021.104

    Geochronology and Geochemistry of Mesozoic Mafic Intrusive Rocks in Zhongtiao Mountain Area: Characterizing Lithospheric Mantle of Southern North China Craton

    doi: 10.3799/dqkx.2021.104
    • Received Date: 2021-03-31
      Available Online: 2022-04-29
    • Publish Date: 2022-04-25
    • The mafic rocks originating from deep earth are probes for lithospheric mantle evolution. In this paper, it presents a synthesis study of zircon U-Pb chronology, whole-rock elemental and Sr-Nd isotopic geochemistry, and zircon Hf isotope of the mafic intrusive rocks in the Zhongtiao Mountain area. Two periods of magmatism during the Late Triassic (217±2 Ma) and the Early Cretaceous (121±2 Ma) are unraveled. The Late Triassic samples are characterized by low to intermediate SiO2 contents (46.03%-53.87%), high MgO (14.37%-18.61%), Ni (282×10-6-433×10-6) and Cr (619×10-6-1 847×10-6) concentrations, low magmatophile element abundances, and convex rare earth element distribution patterns, indicating a cumulate origin. The existence of a large number of original amphiboles indicates that the parental magma is highly water-rich. All samples have nearly parallel trace element distribution patterns, which implies that their mild LILE-HFSE (large ion lithophile element - high field strength element) differentiation reflects the inherent attributes of mantle source region, and their parental magma probably originated from partial melting of the mantle wedge metasomatized by subducted sediment melt/fluid. The SiO2 content of Early Cretaceous mafic intrusive rocks lies between 49.23%-54.99%, while the contents of MgO and Fe2O3T are 4.29%-7.17% and 9.70%-14.79%, respectively. Meanwhile, these rocks are enriched in LILEs and light rare earth elements (LREEs), and depleted in HFSEs and heavy rare earth elements (HREEs). Their formation is ascribed to partial melting of lithospheric mantle metasomatized by subducted continental crust-derived melt. The Late Triassic complex may be related to post-orogenic oceanic slab breakoff caused by collision between the Yangtze plate and the North China craton (NCC), while the Early Cretaceous intrusive rocks may be linked with back arc lithospheric extension triggered by the retreat of Paleo-Pacific plate during its westward subduction. In addition, the relative depletion of whole-rock Nd (εNd(t)=-18.56 to -12.64) and zircon Hf (εHf(t)=-20.2 to +10.4) isotopic compositions in samples compared with that of typical craton lithospheric mantle indicates that the lithospheric mantle nature of the central and southern part of the NCC have changed significantly since the Late Triassic, and the Early Cretaceous craton destruction extends to the central part of the NCC.

       

    • loading
    • Ayers, J., 1998. Trace Element Modeling of Aqueous Fluid-Peridotite Interaction in the Mantle Wedge of Subduction Zones. Contributions to Mineralogy and Petrology, 132(4): 390-404. https://doi.org/10.1007/s004100050431
      Chen, L., Zhao, Z.F., Zheng, Y.F., 2014. Origin of Andesitic Rocks: Geochemical Constraints from Mesozoic Volcanics in the Luzong Basin, South China. Lithos, 190/191: 220-239. https://doi.org/10.1016/j.lithos.2013.12.011
      Dai, L.Q., Zhao, Z.F., Zheng, Y.F., 2015. Tectonic Development from Oceanic Subduction to Continental Collision: Geochemical Evidence from Postcollisional Mafic Rocks in the Hong'an-Dabie Orogens. Gondwana Research, 27(3): 1236-1254. https://doi.org/10.1016/j.gr.2013.12.005
      Deng, J., Liu, X., Wang, Q., et al., 2017. Isotopic Characterization and Petrogenetic Modeling of Early Cretaceous Mafic Diking-Lithospheric Extension in the North China Craton, Eastern Asia. GSA Bulletin, 129(11-12): 1379-1407. https://doi.org/10.1130/b31609.1 doi: 10.1130/B31609.1
      Ding, L., Ma, C., Li, J., et al., 2016. Geochronological, Geochemical and Mineralogical Constraints on the Petrogenesis of Appinites from the Laoniushan Complex, Eastern Qinling, Central China. Geochemistry, 76(4): 579-595. https://doi.org/10.1016/j.chemer.2016.10.002
      Duggen, S., Hoernle, K., van den Bogaard, P., et al., 2005. Post-Collisional Transition from Subduction- to Intraplate-Type Magmatism in the Westernmost Mediterranean: Evidence for Continental-Edge Delamination of Subcontinental Lithosphere. Journal of Petrology, 46(6): 1155-1201. https://doi.org/10.1093/petrology/egi013
      Eggins, S.M., Woodhead, J.D., Kinsley, L.P.J., et al., 1997. A Simple Method for the Precise Determination of ≥40 Trace Elements in Geological Samples by ICPMS Using Enriched Isotope Internal Standardisation. Chemical Geology, 134(4): 311-326. http://dx.doi.org/10.1016/S0009-2541(96)00100-3
      Gao, S., Rudnick, R., Carlson, R., et al., 2003. Removal of Lithospheric Mantle in the North China Craton: Re-Os Isotopic Evidence for Coupled Crust-Mantle Growth. Earth Science Frontiers, 10(3): 61-67(in Chinese with English abstract).
      Gao, S., Zhang, J., Xu, W., et al., 2009. Delamination and Destruction of the North China Craton. Chinese Science Bulletin, 54(19): 3367-3378. https://doi.org/10.1007/s11434-009-0395-9
      Griffin, W.L., Zhang, A., O'Reilly, S.Y., et al., 1998. Phanerozoic Evolution of the Lithosphere Beneath the Sino-Korean Craton. Mantle Dynamics and Plate Interactions in East Asia Geodynamics, 27: 107-126. https://doi.org/10.1029/GD027p0107
      Guo, F., Fan, W., Li, C., et al., 2014. Hf-Nd-O Isotopic Evidence for Melting of Recycled Sediments beneath the Sulu Orogen, North China. Chemical Geology, 381: 243-258. https://doi.org/10.1016/j.chemgeo.2014.04.028
      Halama, R., Marks, M., Brügmann, G., et al., 2004. Crustal Contamination of Mafic Magmas: Evidence from a Petrological, Geochemical and Sr-Nd-Os-O Isotopic Study of the Proterozoic Isortoq Dike Swarm, South Greenland. Lithos, 74(3-4): 199-232. https://doi.org/10.1016/j.lithos.2004.03.004.
      Hirose, K., 1997. Melting Experiments on Lherzolite KLB-1 under Hydrous Conditions and Generation of High-Magnesian Andesitic Melts. Geology, 25(1) 42-44. https://doi.org/10.1130/0091-7613(1997)025<0042:MEOLKU>2.3.CO;2 doi: 10.1130/0091-7613(1997)025<0042:MEOLKU>2.3.CO;2
      Hofmann, A.W., 1988. Chemical Differentiation of the Earth: The Relationship between Mantle, Continental Crust, and Oceanic Crust. Earth and Planetary Science Letters, 90(3): 297-314. https://doi.org/10.1016/0012-821X(88)90132-X
      Hofmann, A.W., Jochum, K.P., Seufert, M., et al., 1986. Nb and Pb in Oceanic Basalts: New Constraints on Mantle Evolution. Earth and Planetary Science Letters, 79(1-2): 33-45. https://doi.org/10.1016/0012-821X(86)90038-5
      Holloway, J.R., Burnham, C.W., 1972. Melting Relations of Basalt with Equilibrium Water Pressure less than Total Pressure. Journal of Petrology, 13(1): 1-29. https://doi.org/10.1093/petrology/13.1.1
      Hong, L., Zhang, Y., Xu, Y., et al., 2017. Hydrous Orthopyroxene-Rich Pyroxenite Source of the Xinkailing High Magnesium Andesites, Western Liaoning: Implications for the Subduction-Modified Lithospheric Mantle and the Destruction Mechanism of the North China Craton. Lithos, 282-283: 10-22. https://doi.org/10.1016/j.lithos.2017.02.014
      Jiang, C.Y., An, S.Y., 1984. On Chemical Characteristics of Calcic Amphiboles from Igneous Rocsk and Their Petrogenesis Significance. Journal of Mineralogy and Petrology, 4(3): 1-9(in Chinese with English abstract).
      Jiang, Y.H., Jiang, S.Y., Zhao, K.D., et al., 2005. SHRIMP Zircon U-Pb Ages of Lamprophyres in the Liaodong Peninsula and Their Constraints on the Beginning Time of Lithospheric Thinning in Eastern China. Chinese Science Bulletin, 50(19): 2161-2168 (in Chinese).
      Kamber, B.S., Greig, A., Schoenberg, R., et al., 2003. A Refined Solution to Earth's Hidden Niobium: Implications for Evolution of Continental Crust and Mode of Core Formation. Precambrian Research, 126(3-4): 289-308. http://doi.org/10.1016/S0301-9268(03)00100-1
      Kelemen, P.B., Hanghøj, K., Greene, A.R., 2007. One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust. Treatise on Geochemistry. Elsevier, Amsterdam, 1-70. https://doi.org/10.1016/b0-08-043751-6/03035-8
      Klemme, S., O'Neill, H.S., 2000. The Near-Solidus Transition from Garnet Lherzolite to Spinel Lherzolite. Contributions to Mineralogy and Petrology, 138(3): 237-248. https://doi.org/10.1007/s004100050560
      Kusky, T. M., Windley, B. F., Wang, L., et al., 2014. Flat Slab Subduction, Trench Suction, and Craton Destruction: Comparison of the North China, Wyoming, and Brazilian Cratons. Tectonophysics, 630: 208-221. https://doi.org/10.1016/j.tecto.2014.05.028.
      Li, B.P., Greig, A., Zhao, J.X., et al., 2005. ICP-MS Trace Element Analysis of Song Dynasty Porcelains from Ding, Jiexiu and Guantai Kilns, North China. Journal of Archaeological Science, 32(2): 251-259. http://dx.doi.org/10.1016/j.jas.2004.09.004
      Li, C, F., Chu, Z.Y., Guo, J.H., et al., 2015. A Rapid Single Column Separation Scheme for High Precision Sr-Nd-Pb Isotopic Analysis in Geological Samples Using Thermal Ionization Mass Spectrometry. Analytical Methods. 7(11): 4793-4802. doi: 10.1039/C4AY02896A
      Li, R., Yang, J.H., Wang, H., et al., 2020. Triassic Lithospheric Modification of the Northern North China Craton: Evidences from the Composite Kalaqin Batholith and Ultramafic-Mafic Heilihe Intrusive Complex in Inner Mongolia. Lithos, 362-363: 105501. https://doi.org/10.1016/j.lithos.2020.105501
      Li, S.G., Xiao, Y.L., Liou, D.L., et al., 1993. Collision of the North China and Yangtse Blocks and Formation of Coesite-Bearing Eclogites: Timing and Processes. Chemical Geology, 109(1/2/3/4): 89-111. https://doi.org/10.1016/0009-2541(93)90063-O
      Li, X.H., Liu, Y., Li, Q.Y., et al., 2009. Precise Determination of Phanerozoic Zircon Pb/Pb Age by Multicollector SIMS without External Standardization. Geochemistry, Geophysics, Geosystems, 10(4): Q04010. https://doi.org/10.1029/2009GC002400
      Liu, X., Fan, H.R., Qiu, Z.J., et al., 2015. Formation Ages of the Jiangxian and Zhongtiao Groups in the Zhongtiao Mountain Region, North China Craton: Insights from SIMS U-Pb Dating on Zircons of Intercalated Plagioclase Amphibolites. Acta Petrologica Sinica, 31(6): 1564-1572(in Chinese with English abstract).
      Liu, S., Hu, R., Gao, S., et al., 2008. U-Pb Zircon Age, Geochemical and Sr-Nd-Pb-Hf Isotopic Constraints on Age and Origin of Alkaline Intrusions and Associated Mafic Dikes from Sulu Orogenic Belt, Eastern China. Lithos, 106(3-4): 365-379. https://doi.org/10.1016/j.lithos.2008.09.004
      Liu, S., Hu, R., Gao, S., et al., 2012. Geochemical and Isotopic Constraints on the Age and Origin of Mafic Dikes from Eastern Shandong Province, Eastern North China Craton. International Geology Review, 54(12): 1389-1400. https://doi.org/10.1080/00206814.2011.641732
      Liu, Y., Wei, J., Zhang, D., et al., 2020. Early Cretaceous Wulong Intermediate-Mafic Dike Swarms in the Liaodong Peninsula: Implications for Rapid Lithospheric Delamination of the North China Craton. Lithos, 362-363: 105473. https://doi.org/10.1016/j.lithos.2020.105473
      Ma, L., Jiang, S.Y., Hou, M.L., et al., 2014. Geochemistry of Early Cretaceous Calc-Alkaline Lamprophyres in the Jiaodong Peninsula: Implication for Lithospheric Evolution of the Eastern North China Craton. Gondwana Research, 25(2): 859-872. https://doi.org/10.1016/j.gr.2013.05.012.
      Ma, X., Chen, B., Niu, X.L., 2009. Genesis of the Late Paleozoic Dongwanzi Pluton, Eastern Hebei. Acta Petrologica Sinica, 25(8): 1975-1988(in Chinese with English abstract).
      Middlemost, E., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      Paton, C., Woodhead, J.D., Hellstrom, J.C., et al., 2010. Improved Laser Ablation U-Pb Zircon Geochronology through Robust Downhole Fractionation Correction. Geochemistry, Geophysics, Geosystems, 11(3): Q0AA06. https://doi.org/10.1029/2009GC002618
      Peccerillo, A., Taylor, S.R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. doi: 10.1007/BF00384745
      Pei, F.P., Xu, W.L., Wang, Q.H., et al., 2004. Mesozoic Basalt and Mineral Chemistry of the Mantle-Derived Xenocrysts in Feixian, Western Shandong, China: Constraints on Nature of Mesozoic Lithospheric Mantle. Geological Journal of China Universities, 10(1): 88-97(in Chinese with English abstract).
      Polat, A., Hofmann, A.W., Rosing, M.T., 2002. Boninite-Like Volcanic Rocks in the 3.7-3.8 Ga Isua Greenstone Belt, West Greenland: Geochemical Evidence for Intra-Oceanic Subduction Zone Processes in the Early Earth. Chemical Geology, 184(3/4): 231-254. https://doi.org/10.1016/S0009-2541(01)00363-1
      Princivalle, F., De Min, A., Lenaz, D., et al., 2014. Ultramafic Xenoliths from Damaping (Hannuoba Region, NE China): Petrogenetic Implications from Crystal Chemistry of Pyroxenes, Olivine and Cr-Spinel and Trace Element Content of Clinopyroxene. Lithos, 188: 3-14. https://doi.org/10.1016/j.lithos.2013.10.013
      Quan, Y.K., Yang, D.B., Mu, M.S., et al., 2020. Tectonic Evolution of the Northeastern North China Craton: Constraints from Geochronology and Sr-Nd-Hf-O Isotopic Data from Late Triassic Intrusive Rocks on Liaodong Peninsula, NE China. Lithos, 362-363: 105489. https://doi.org/10.1016/j.lithos.2020.105489
      Rudnick, R.L., Gao, S., 2003. Composition of the Continental Crust. Treatise on Geochemistry. Elsevier, Amsterdam. https://doi.org/10.1016/b0-08-043751-6/03016-4
      Shao, J.A., Han, Q.J., Zhang, L.Q., et al., 1999. Two Kinds of Vertical Accretion of the Continental Crust: An Example of the Da Hinggan Mts. Acta Petrologica Sinica, 15(4): 600-606(in Chinese with English abstract).
      Shao, J.A., Tian, W., Zhang, J.H., 2015. Early Permian Cumulates in Northern Margin of North China Craton and Their Tectonic Significances. Earth Science, 40(9): 1441-1457(in Chinese with English abstract).
      Sisson, T.W., Grove, T.L., 1993. Experimental Investigations of the Role of H2O in Calc-Alkaline Differentiation and Subduction Zone Magmatism. Contributions to Mineralogy and Petrology, 113(2): 143-166. https://doi.org/10.1007/BF00283225.
      Sláma, J., Košler, J., Condon, D.J., et al., 2008. Plešovice Zircon: A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chemical Geology, 249(1): 1-35. http://doi.org/10.1016/j.chemgeo.2007.11.005
      Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
      Sun, J.F., Yang, J.H., 2009. Early Cretaceous A-Type Granites in the Eastern North China Block with Relation to Destruction of the Craton. Earth Science, 34(1): 137-147(in Chinese with English abstract).
      Sun, J.F., Yang, J.H., 2013. Mesozoic Magmatism Related to Decratonization of the North China Craton. Acta Petrologica et Mineralogica, 32(5): 577-592(in Chinese with English abstract).
      Tang, Y.J., Ying, J.F., Zhao, Y.P., et al., 2021. Nature and Secular Evolution of the Lithospheric Mantle beneath the North China Craton. Science China Earth Sciences. https://doi.org/10.1007/s11430-020-9737-4 (in Chinese)
      Wang, W., Xu, W.L., Ji, W.Q., et al., 2006. Late Mesozoic and Paleogene Basalts and Deep-Derived Xenocrysts in Eastern Liaoning Province, China: Constraints on Nature of Lithospheric Mantle. Geological Journal of China Universities, 12(1): 30-40(in Chinese with English abstract).
      Weyer, S., Münker, C., Rehkämper, M., et al., 2002. Determination of Ultra-Low Nb, Ta, Zr and Hf Concentrations and the Chondritic Zr/Hf and Nb/Ta Ratios by Isotope Dilution Analyses with Multiple Collector ICP-MS. Chemical Geology, 187(3): 295-313. https://doi.org/10.1016/S0009-2541(02)00129-8
      Wu, F., Lin, J., Wilde, S., et al., 2005. Nature and Significance of the Early Cretaceous Giant Igneous Event in Eastern China. Earth and Planetary Science Letters, 233(1-2): 103-119. https://doi.org/10.1016/j.epsl.2005.02.019
      Xu, W., Yang, D., Shan, G., et al., 2010. Geochemistry of Peridotite Xenoliths in Early Cretaceous High-Mg# Diorites from the Central Orogenic Block of the North China Craton: The Nature of Mesozoic Lithospheric Mantle and Constraints on Lithospheric Thinning. Chemical Geology, 270(1-4): 257-273. https://doi.org/10.1016/j.chemgeo.2009.12.006
      Xu, W.L., Wang, Q.H., Wang, D.Y., et al., 2004. Mesozoic Lithospheric Thinning Process and Mechanism in the Eastern North China Craton: Evidence from Mesozoic Igneous Rocks and Deep-Source Xenoliths. Earth Science Frontiers, 11(3): 9(in Chinese with English abstract).
      Xu, Y.G., Li, H.Y., Pang, C.J., et al., 2009. On the Timing and Duration of the Destruction of the North China Craton. Science Bulletin, 54(19): 3379-3396. https://doi.org/10.1007/s11434-009-0346-5
      Yan, J., Chen, J.F., Xie, Z., et al., 2003. Slow-Source Xenoliths in Late Cretaceous Basalts in Eastern Shandong: New Evidence for Time Constraints on Lithospheric Thinning in Eastern China. Chinese Science Bulletin, 48(14): 1570-1574(in Chinese). doi: 10.1360/csb2003-48-14-1570
      Yan, Q.R., Wang, Z.Q., Yan, Z., et al., 2007. SHRIMP Analyses for Ophiolitic-Mafic Blocks in the Kangxian-Mianxian Section of the Mianxian-Lueyang Melange: Their Geological Implications. Geological Review, 53(6): 755-764(in Chinese with English abstract).
      Yang, H.T., Yang, D.B., Mu, M.S., et al., 2019. Sr-Nd-Hf Isotopic Compositions of Lamprophyres in Western Shandong, China: Implications for the Nature of the Early Cretaceous Lithospheric Mantle beneath the Eastern North China Craton. Lithos, 336-337: 1-13. https://doi.org/10.1016/j.lithos.2019.03.030
      Yang, J.H., Sun, J.F., Chen, F., et al., 2007a. Sources and Petrogenesis of Late Triassic Dolerite Dikes in the Liaodong Peninsula: Implications for Post-Collisional Lithosphere Thinning of the Eastern North China Craton. Journal of Petrology, 48(10): 1973-1997. https://doi.org/10.1093/petrology/egm046
      Yang, J.H., Wu, F.Y., Wilde, S.A., et al., 2007b. Petrogenesis of Late Triassic Granitoids and Their Enclaves with Implications for Post-Collisional Lithospheric Thinning of the Liaodong Peninsula, North China Craton. Chemical Geology, 242(1-2): 155-175. https://doi.org/10.1016/j.chemgeo.2007.03.007
      Zhang, H.F., Min, S., Zhou, X.H., et al., 2002. Mesozoic Lithosphere Destruction beneath the North China Craton: Evidence from Major-, Trace-Element and Sr-Nd-Pb Isotope Studies of Fangcheng Basalts. Contributions to Mineralogy and Petrology, 144(2): 241-254. https://doi.org/10.1007/s00410-002-0395-0
      Zhang, H.F., Ying, J.F., Xu, P., et al., 2004. Mantle Olivine Xenoliths from Mesozoic Basalts in North China: Implications for Lithospheric Mantle Replacement Processes. Chinese Science Bulletin, 49(8): 784-789(in Chinese). doi: 10.1360/csb2004-49-8-784
      Zhang, S.H., Zhao, Y., Davis, G.A., et al., 2014. Temporal and Spatial Variations of Mesozoic Magmatism and Deformation in the North China Craton: Implications for Lithospheric Thinning and Decratonization. Earth-Science Reviews, 131: 49-87. https://doi.org/10.1016/j.earscirev.2013.12.004
      Zhao, G.C., Cawood, P.A., Wilde, S.A., et al., 2000. Metamorphism of Basement Rocks in the Central Zone of the North China Craton: Implications for Paleoproterozoic Tectonic Evolution. Precambrian Research, 103(1/2): 55-88. https://doi.org/10.1016/S0301-9268(00)00076-0
      Zhao, B., Wang, D.H., Hou, K.J., et al., 2012. Isochronology Study on Sushui Complex in Zhongtiao Mountains and Its Geological Significance. Journal of Earch Sciences and Environment, 34(1): 1-8(in Chinese with English abstract).
      Zhao, Z., Liang, S., Santosh, M., et al., 2020. Lithospheric Extension Associated with Slab Rollback: Insights from Early Cretaceous Magmatism in the Southern Segment of Tan-Lu Fault Zone, Central-Eastern China. Lithos, 362-363. https://doi.org/10.1016/j.lithos.2020.105487
      Zhao, Z.F., Dai, L.Q., Zheng, Y.F., 2015. Two Types of the Crust-Mantle Interaction in Continental Subduction Zones. Scientia Sinica (Terrae), 58(8): 1269-1283 (in Chinese).
      Zheng, Y. F., Xu, Z., Zhao, Z. F., et al., 2018. Mesozoic Mafic Magmatism in North China: Implications for Thinning and Destruction of Cratonic Lithosphere. Science China Earth Sciences, 61(4): 353-385(in Chinese). doi: 10.1007/s11430-017-9160-3
      Zheng, J.P., Lu, F.X., Griffin, W., et al., 2006. Lithospheric Thinning Accompanying Mantle Lateral Spreading, Erosion and Replacement beneath the Eastern Part of North China: Evidence from Peridotites. Earth Science Frontiers, 13(2): 76-85(in Chinese with English abstract).
      Zheng, J.P., Dai, H.K., 2018. Mantle Replacement in Eastern North China Caused by Plate Subduction and Retracement in the Western Pacific, Resulting in Intracontinental Basin-Mountain Coupling. Science China Earth Sciences, 48: 436-456(in Chinese).
      Zheng, T., Zhao, L., Zhu, R.X., 2009. New Evidence from Seismic Imaging for Subduction during Assembly of the North China Craton. Geology, 37(5): 395-398. https://doi.org/10.1130/g25600a.1 doi: 10.1130/G25600A.1
      Zheng, Y.F., Chen, Y.X., Dai, L.Q., et al., 2015. Developing Plate Tectonics Theory from Oceanic Subduction Zones to Collisional Orogens. Scientia Sinica (Terrae), 45(6): 711-735(in Chinese). doi: 10.1360/zd-2015-45-6-711
      Zheng, Y.F., Wu, F.Y., 2009. Growth and Reworking of Cratonic Lithosphere. Chinese Science Bulletin, 54(14): 1945-1949(in Chinese). doi: 10.1360/csb2009-54-14-1945
      Zheng, Y.F., Xu, Z., Zhao, Z.F., et al., 2018. Mesozoic Mafic Magmatism and Craton Thinning and Destruction in North China. Science China Earth Sciences, 48: 379-414(in Chinese).
      高山, Rudnick, R.L., Carlson, R.W., et al., 2003. 华北克拉通岩石圈地幔置换作用和壳幔生长耦合的Re-Os同位素证据. 地学前缘, 10(3): 61-67. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200303006.htm
      姜常义, 安三元, 1984. 论火成岩中钙质角闪石的化学组成特征及其岩石学意义. 矿物岩石, 4(3): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS198403000.htm
      姜耀辉, 蒋少涌, 赵葵东, 等, 2005. 辽东半岛煌斑岩SHRIMP锆石U-Pb年龄及其对中国东部岩石圈减薄开始时间的制约. 科学通报, 50(19): 2161-2168. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200519016.htm
      刘玄, 范宏瑞, 邱正杰, 等, 2015. 中条山地区绛县群和中条群沉积时限: 夹层斜长角闪岩SIMS锆石U-Pb年代学证据. 岩石学报, 31(6): 1564-1572. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201506006.htm
      马旭, 陈斌, 牛晓露, 2009. 冀东晚古生代东湾子岩体的岩石成因研究. 岩石学报, 25(8): 1975-1988. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200908023.htm
      裴福萍, 许文良, 王清海, 等, 2004. 鲁西费县中生代玄武岩及幔源捕掳晶的矿物化学: 对岩石圈地幔性质的制约. 高校地质学报, 10(1): 88-97. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200401007.htm
      邵济安, 韩庆军, 张履桥, 等, 1999. 陆壳垂向增生的两种方式: 以大兴安岭为例. 岩石学报, 15(4): 600-606. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB199904013.htm
      邵济安, 田伟, 张吉衡, 2015. 华北克拉通北缘早二叠世堆晶岩及其构造意义. 地球科学, 40(9): 1441-1457. doi: 10.3799/dqkx.2015.131
      孙金凤, 杨进辉, 2009. 华北东部早白垩世A型花岗岩与克拉通破坏. 地球科学, 34(1): 137-147. doi: 10.3321/j.issn:1000-2383.2009.01.013
      孙金凤, 杨进辉, 2013. 华北中生代岩浆作用与去克拉通化. 岩石矿物学杂志, 32(5): 577-592. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201305003.htm
      汤艳杰, 英基丰, 赵月鹏, 等, 2021. 华北克拉通岩石圈地幔特征与演化过程. 中国科学: 地球科学, https://doi.org/10.1360/SSTe-2020-0303 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202109006.htm
      王微, 许文良, 纪伟强, 等, 2006. 辽东中生代晚期和古近纪玄武岩及深源捕虏晶: 对岩石圈地幔性质的制约. 高校地质学报, 12(1): 30-40. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200601005.htm
      许文良, 王清海, 王冬艳, 等, 2004. 华北克拉通东部中生代岩石圈减薄的过程与机制: 中生代火成岩和深源捕虏体证据. 地学前缘, 11(3): 9. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200403040.htm
      闫峻, 陈江峰, 谢智, 等, 2003. 鲁东晚白垩世玄武岩中的幔源捕虏体: 对中国东部岩石圈减薄时间制约的新证据. 科学通报, 48(14): 1570-1574. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200314017.htm
      闫全人, 王宗起, 闫臻, 等, 2007. 秦岭勉略构造混杂带康县: 勉县段蛇绿岩块-铁镁质岩块的SHRIMP年代及其意义. 地质论评, 53(6): 755-764. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200706010.htm
      张宏福, 英基丰, 徐平, 等, 2004. 华北中生代玄武岩中地幔橄榄石捕虏晶: 对岩石圈地幔置换过程的启示. 科学通报, 49(8): 784-789. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200408014.htm
      赵斌, 王登红, 侯可军, 等, 2012. 中条山涑水杂岩的同位素年代学研究及其地质意义. 地球科学与环境学报, 34(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201201003.htm
      赵子福, 戴立群, 郑永飞, 2015. 大陆俯冲带两类壳幔相互作用. 中国科学: 地球科学, 45(7): 900-915. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201507002.htm
      郑建平, 路凤香, Griffin, W.L., 等, 2006. 华北东部橄榄岩与岩石圈减薄中的地幔伸展和侵蚀置换作用. 地学前缘, 13(2): 76-85. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200602008.htm
      郑建平, 戴宏坤, 2018. 西太平洋板片俯冲与后撤引起华北东部地幔置换并导致陆内盆-山耦合. 中国科学: 地球科学, 48: 436-456. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201804004.htm
      郑永飞, 陈伊翔, 戴立群, 等, 2015. 发展板块构造理论: 从洋壳俯冲带到碰撞造山带. 中国科学: 地球科学, 45(6): 711-735. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201506001.htm
      郑永飞, 吴福元, 2009. 克拉通岩石圈的生长和再造. 科学通报, 54(14): 1945-1949. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200914002.htm
      郑永飞, 徐峥, 赵子福, 等, 2018. 华北中生代镁铁质岩浆作用与克拉通减薄和破坏. 中国科学: 地球科学, 48: 379-414. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201804002.htm
    • 刘洁 附表1~2.doc
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(14)  / Tables(5)

      Article views (1771) PDF downloads(106) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return