• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 2
    Feb.  2022
    Turn off MathJax
    Article Contents
    Yan Ketao, Guo Qinghai, Luo Li, 2022. Methylation and Thiolation of Arsenic in Tengchong Hot Springs. Earth Science, 47(2): 622-632. doi: 10.3799/dqkx.2021.105
    Citation: Yan Ketao, Guo Qinghai, Luo Li, 2022. Methylation and Thiolation of Arsenic in Tengchong Hot Springs. Earth Science, 47(2): 622-632. doi: 10.3799/dqkx.2021.105

    Methylation and Thiolation of Arsenic in Tengchong Hot Springs

    doi: 10.3799/dqkx.2021.105
    • Received Date: 2021-11-03
    • Publish Date: 2022-02-25
    • In order to study the speciation of arsenic (As) in hot springs and their distribution and transformation patterns, IC-ICP-MS quantification and hydrogeochemical analyses were conducted for various arsenic species in Tengchong hot springs in Yunnan Province. In 91 hot spring samples, 11 As species were detected, which include arsenate, arsenite, inorganic thioarsenates, methylated oxyarsenates and methylated thioarsenates. Arsenate and arsenite were predominate species followed by inorganic thioarsenates, unlike inorganic species, methylated As occurred as minor species in Tengchong hot springs. The content of thioarsenates and their degree of thiolation are positively correlated with S/As molar ratios. The lack of methylated oxyarsenates was probably the reason for low methylated thioarsenate levels, besides, the S/As molar ratio, total As, temperature, pH, Eh and TDS can also affect the formation and transformation of methylated thioarsenates. Methylated thioarsenates may undergo a series of transformations and interfacial reactions on the surface drainage of hot springs such as de-thiolation, de-methylation and then adsorption by sediments. Other As species can be converted to methylated thioarsenate in downstream areas with relatively low temperatures, low flow rates and significant microbial activity. The thiolated and methylated species of As are widely distributed in hot springs, and the highly toxic methylated thioarsenates have high mobility and are likely to reappear in hot spring drainage environment, which should attract the attention of relevant studies.

       

    • loading
    • Bai, D. H., Liao, Z. J., Zhao, G. Z., et al., 1994. The Inference of Magmatic Heat Source Beneath the Rehai (Hot Sea) Field of Tengchong From the Result of Magnetotelluric Sounding. Chinese Science Bulletin, 39(4): 344-347 (in Chinese). doi: 10.1360/csb1994-39-4-344
      Ballantyne, J. M., Moore, J. N., 1988. Arsenic Geochemistry in Geothermal Systems. Geochimica et Cosmochimica Acta, 52(2): 475-483. https://doi.org/10.1016/0016-7037(88)90102-0
      Conklin, S. D., Fricke, M. W., Creed, P. A., et al., 2008. Investigation of the PH Effects on the Formation of Methylated Thio: Arsenicals, and the Effects of PH and Temperature on Their Stability. Journal of Analytical Atomic Spectrometry, 23(5): 711. https://doi.org/10.1039/b713145c
      Couture, R. M., Rose, J., Kumar, N., et al., 2013. Sorption of Arsenite, Arsenate, and Thioarsenates to Iron Oxides and Iron Sulfides: A Kinetic and Spectroscopic Investigation. Environmental Science & Technology, 47(11): 5652-5659. https://doi.org/10.1021/es3049724
      Ellis, A. J., Mahon, W. A. J., 1964. Natural Hydrothermal Systems and Experimental Hot Water/rock Interactions (Part Ⅱ). Geochimica et Cosmochimica Acta, 31(4): 519-538. https://doi.org/10.1016/0016-7037(67)90032-4
      Guo, Q. H., Wang, Y. X., 2012. Geochemistry of Hot Springs in the Tengchong Hydrothermal Areas, Southwestern China. Journal of Volcanology and Geothermal Research, 215-216: 61-73. https://doi.org/10.1016/j.jvolgeores.2011.12.003
      Guo, Q. H., Liu, M. L., Li, J. X., 2017. Thioarsenic Species in the High-Temperature Hot Springs from the Rehai Geothermal Field (Tengchong) and Their Geochemical Geneses. Earth Science, 42 (2): 286-297 (in Chinese with English abstract).
      Guo, Q. H., Planer-Friedrich, B., Liu, M. L., et al., 2017. Arsenic and Thioarsenic Species in the Hot Springs of the Rehai Magmatic Geothermal System, Tengchong Volcanic Region, China. Chemical Geology, 453(1): 12-20. https://doi.org/10.1016/j.chemgeo.2017.02.010
      Guo, Q. H., Planer-Friedrich, B., Liu, M. L., et al., 2019. Magmatic Fluid Input Explaining the Geochemical Anomaly of Very High Arsenic in Some Southern Tibetan Geothermal Waters. Chemical Geology, 513: 32-43. https://doi.org/10.1016/j.chemgeo.2019.03.008.
      Hinrichsen, S., Geist, F., Planer-Friedrich, B., 2015. Inorganic and Methylated Thioarsenates Pass the Gastrointestinal Barrier. Chem Res Toxicol, 28: 1678-1680. https://doi.org/10.1021/acs.chemrestox.5b00268.
      Hirano, S., Kobayashi, Y., Cui, X., et al., 2004. The Accumulation and Toxicity of Methylated Arsenicals in Endothelial Cells: Important Roles of Thiol Compounds. Toxicol Appl Pharmacol, 198: 458-67. https://doi.org/10.1016/j.taap.2003.10.023.
      Hug, K., Maher, W. A., Stott, M. B., et al., 2014. Microbial Contributions to Coupled Arsenic and Sulfur Cycling in the Acid-Sulfide Hot Spring Champagne Pool, New Zealand. Front Microbiol, 5: 569. https://doi.org/10.3389/fmicb.2014.00569
      Kerl, C. F., Ballaran, T. B., Planer-Friedrich, B., 2019a. Iron Plaque at Rice Roots: No Barrier for Methylated Thioarsenates. Environmental Science & Technology, 53: 13666-13674. https://doi.org/10.1021/acs.est.9b04158
      Kerl, C. F., Schindele, R. A., Bruggenwirth, L., et al., 2019b. Methylated Thioarsenates and Monothioarsenate Differ in Uptake, Transformation, and Contribution to Total Arsenic Translocation in Rice Plants. Environmental Science & Technology, 53: 5787-5796. https://doi.org/10.1021/acs.est.9b00592
      Kim, Y. T., Lee, H., Yoon, H. O., et al., 2016. Kinetics of Dimethylated Thioarsenicals and the Formation of Highly Toxic Dimethylmonothioarsinic Acid in Environment. Environmental Science & Technology, 50: 11637-11645. https://doi.org/10.1021/acs.est.6b02656
      Lang, S. Q., Butterfield, D. A., Schulte, M., et al., 2010. Elevated Concentrations of Formate, Acetate and Dissolved Organic Carbon Found at The Lost City Hydrothermal Field. Geochimica et Cosmochimica Acta, 74: 941-952. https://doi.org/10.1016/j.gca.2009.10.045
      Langner, H. W., Jackson, C. R., Mcdermott, T. R., et al., 2001. Rapid Oxidation of Arsenite in a Hot Spring Ecosystem, Yellowstone National Park. Environmental Science & Technology, 35: 3302-3309. https://doi.org/10.1021/es0105562.
      Li, Y. R., Low, G. K., Scott J. A., et al., 2011. Microbial Transformation of Arsenic Species in Municipal Landfill Leachate. Journal of hazardous materials, 188: 140-147. https://doi.org/10.1016/j.jhazmat.2011.01.093
      Liu, M. L., He, T., Wu, Q. F., et al., 2019. Hydrogeochemistry of Geothermal Waters from Xiongan New Area and Its Indicating Significance. Earth Science, 45: 2221-2231 (in Chinese with English abstract).
      Liao, Z., Zhao, P., 1999. Yunnan-Tibet Geothermal Belt-Geothermal Resources and Case Histories. Science Press, Beijing (in Chinese with English abstract).
      Naranmandura, H., Carew, M. W., Xu, S., et al., 2011. Comparative Toxicity of Arsenic Metabolites in Human Bladder Cancer EJ-1 Cells. Chem Res Toxicol, 24: 1586-96. https://doi.org/10.1021/tx200291p
      Naranmandura, H., Ibata, K., Suzuki, K. T., 2007. Toxicity of Dimethylmonothioarsinic Acid Toward Human Epidermoid Carcinoma A431 Cells. Chemical Research in Toxicology, 20: 1120-1125. https://doi.org/10.1021/tx700103y
      Planer-Friedrich, B., Forberg, J., Lohmayer, R., et al., 2020. Relative Abundance of Thiolated Species of As, Mo, W, and Sb in Hot Springs of Yellowstone National Park and Iceland. Environmental Science & Technology, 54: 4295-4304. https://doi.org/10.1021/acs.est.0c00668
      Planer-Friedrich, B., Hartig, C., Lohmayer, R., et al., 2015. Anaerobic Chemolithotrophic Growth of the Haloalkaliphilic Bacterium Strain MLMS-1 by Disproportionation of Monothioarsenate. Environmental Science & Technology, 49: 6554-63. https://doi.org/10.1021/acs.est.5b01165
      Planer-Friedrich, B., Lehr, C., Matschullat, J., et al., 2006. Speciation of Volatile Arsenic at Geothermal Features in Yellowstone National Park. Geochimica et Cosmochimica Acta, 70: 2480-2491. https://doi.org/10.1016/j.gca.2006.02.019
      Planer-Friedrich, B., London, J., McCleskey, R. B., et al., 2007. Thioarsenates in Geothermal Waters of Yellowstone National Park: Determination, Preservation, and Geochemical Importance. Environmental Science & Technology, 41: 5245-5251. https://doi.org/10.1021/es070273v
      Qin, J., Lehr, C. R., Yuan, C., et al., 2009. Biotransformation of Arsenic by A Yellowstone Thermoacidophilic Eukaryotic Alga. Proceedings of the National Academy of Sciences, 106: 5213-5217. https://doi.org/10.1073/pnas.0900238106
      Rodríguez-Lado, L., Sun, G., Berg, M., et al., 2013. Groundwater Arsenic Contamination Throughout China. Science, 341: 866-868. https://doi.org/10.1126/science.1237484
      Sharma, A. K., Tjell, J. C., Sloth, J. J., et al., 2014. Review of Arsenic Contamination, Exposure Through Water and Food and Low Cost Mitigation Options for Rural Areas. Applied Geochemistry, 41: 11-33. https://doi.org/10.1016/j.apgeochem.2013.11.012.
      Song, X. Q., Peng, Q. Duan, Q. S., et al., 2019. Hydrochemistry Characteristics and Origin of Geothermal Water in Northeastern Guizhou. Earth Science, 44: 2874-2886 (in Chinese with English abstract).
      Tong, W., Zhang, M. T., 1989. Geothermics in Tengchong. Science Press, Beijing (in Chinese).
      Wallschläger, D., London, J., 2008. Determination of Methylated Arsenic-Sulfur Compounds in Groundwater. Environmental Science & Technology, 42: 228-234. https://doi.org/10.1021/es0707815
      Wang, J., Halder, D., Wegner, L., et al., 2020a. Redox Dependence of Thioarsenate Occurrence in Paddy Soils and the Rice Rhizosphere. Environmental Science & Technology, 54: 3940-3950. https://doi.org/10.1021/acs.est.9b05639
      Wang, J., Kerl, C. F., Hu, P., et al., 2020b. Thiolated Arsenic Species Observed in Rice Paddy Pore Waters. Nature Geoscience, 13: 282-287. https://doi.org/10.1038/s41561-020-0533-1
      Webster, J.G., Nordstrom, D.K., 2003. Geothermal Arsenic. In: Welch, A.H., Stollenwerk, K.G. (eds) Arsenic in Ground Water. Springer, Boston, MA. https://doi.org/10.1007/0-306-47956-7_4
      Wu, G., Huang, L., Jiang, H., et al., 2017. Thioarsenate Formation Coupled with Anaerobic Arsenite Oxidation by A Sulfate-Reducing Bacterium Isolated From A Hot Spring. Frontiers in microbiology, 8: 1336. https://doi.org/10.3389/fmicb.2017.01336
      Zhu, Y. G., Xue, X. M., Kappler, A., et al., 2017. Linking Genes to Microbial Biogeochemical Cycling: Lessons from Arsenic. Environmental Science & Technology, 51: 7326-7339. https://doi.org/10.1021/acs.est.7b00689
      Zhuang, Y. Q., Guo Q. H., Liu M. L., et al., 2016. Geochemical Simulation of Thioarsenic Speciation in High-Temperature, Sulfide-Rich Hot Springs: A Case Study in the Rehai Hydrothermal Area, Tengchong, Yunnan. Earth Science, 41(9): 1499-1510 (in Chinese with English abstract).
      白登海, 廖志杰, 赵国泽, 等, 1994. 从MT探测结果推论腾冲热海热田的岩浆热源. 科学通报, 39(4): 344-347. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199404017.htm
      郭清海, 刘明亮, 李洁祥, 2017. 腾冲热海地热田高温热泉中的硫代砷化物及其地球化学成因. 地球科学. 42(2): 286-297. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201702010.htm
      廖志杰, 赵平, 1999. 滇藏地热带: 地热资源和典型地热系统. 北京: 科学出版社.
      刘明亮, 何曈, 吴启帆, 等, 2019. 雄安新区地热水化学特征及其指示意义. 地球科学, 45(6): 2221-2231. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202006032.htm
      宋小庆, 彭钦, 段启杉, 等, 2019. 黔东北地区地热水化学特征及起源. 地球科学, 44(9): 2874-2886. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201909006.htm
      佟伟, 章铭陶, 1989. 腾冲地热. 北京: 科学出版社.
      庄亚芹, 郭清海, 刘明亮, 等, 2016. 高温富硫化物热泉中硫代砷化物存在形态的地球化学模拟: 以云南腾冲热海水热区为例. 地球科学. 41(9): 1499-1510. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201609006.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)  / Tables(1)

      Article views (916) PDF downloads(51) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return