• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 5
    May  2022
    Turn off MathJax
    Article Contents
    Zhou He, Wu Caifang, Jiang Xiuming, Wang Zhenzhi, 2022. Construction of Geological Selection Index System and Evaluation Technology of Favorable Area for Underground Coal Gasification. Earth Science, 47(5): 1777-1790. doi: 10.3799/dqkx.2021.112
    Citation: Zhou He, Wu Caifang, Jiang Xiuming, Wang Zhenzhi, 2022. Construction of Geological Selection Index System and Evaluation Technology of Favorable Area for Underground Coal Gasification. Earth Science, 47(5): 1777-1790. doi: 10.3799/dqkx.2021.112

    Construction of Geological Selection Index System and Evaluation Technology of Favorable Area for Underground Coal Gasification

    doi: 10.3799/dqkx.2021.112
    • Received Date: 2021-12-05
    • Publish Date: 2022-05-25
    • In order to clarify the geological factors affecting underground coal gasification (UCG) and construct a scientific and quantitative geological index evaluation system, seven types of geological conditions and 41 geological indexes affecting UCG are systematically analyzed, graded and quantified, and then the geological selection index system is established in the paper. According to the importance of the selected area, each geological index is divided into two categories: basic geological index (A) and key geological index (B). Based on these two categories of indexes, two new quantitative evaluation methods for favorable areas of UCG are proposed, namely fine type (A+B) and general type (B). The weight of geological indexes involved in the two evaluation methods is determined using expert scoring method and analytic hierarchy process (AHP). According to the conditions of resources, mining technology, regional structure and environment, the qualitative classification scheme of evaluation results is determined, and the general steps of favorable area optimization are put forward by comprehensive quantitative evaluation and qualitative classification. Finally, a complete set of evaluation technical system for favorable areas of UCG is formed. The effective application of the evaluation technology system can provide important theoretical support for the scientific site selection and industrialization process of UCG.

       

    • loading
    • Bhutto, A. W., Bazmi, A. A., Zahedi, G., 2013. Underground Coal Gasification: From Fundamentals to Applications. Progress in Energy and Combustion Science, 39(1): 189-214. https://doi.org/10.1016/j.pecs.2012.09.004
      Bielowicz, B., Kasiński, J. R., 2014. The Possibility of Underground Gasification of Lignite from Polish Deposits. International Journal of Coal Geology, 131: 304-318. https://doi.org/10.1016/j.coal.2014.06.025
      Chen, B., 2006. The Study on High Temperature Gasification of Different Types of Coal (Dissertation). East China University of Technology, Shanghai (in Chinese with English abstract).
      Chen, J. M., Wu, Z. H., Liu, W. H., et al., 2021. Heavy Metal Pollution Evaluation and Species Analysis of Waste Rock Piles in Shuikoushan, Hunan Province. Earth Science, 46(11): 4127-4139 (in Chinese with English abstract).
      Chen, Z. H., Jiang, C. Q., 2020. An Integrated Mass Balance Approach for Assessing Hydrocarbon Resources in a Liquid-Rich Shale Resource Play: An Example from Upper Devonian Duvernay Formation, Western Canada Sedimentary Basin. Journal of Earth Science, 31(6): 1259-1272. doi: 10.1007/s12583-020-1088-1
      Ge, S. R., 2017. Chemical Mining Technology for Deep Coal Resources. Journal of China University of Mining & Technology, 46(4): 679-691 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGKD201704001.htm
      Han, L., Qin, Y., Wang, Z. T., 2019. Geological Consideration for Site Selection of Underground Coal Gasifier. Coal Geology & Exploration, 47(2): 44-50 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-MDKT201902008.htm
      Huang, F. M., Wang, Y., Dong, Z. L., et al., 2019. Regional Landslide Susceptibility Mapping Based on Grey Relational Degree Model. Earth Science, 44(2): 664-676 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201902027.htm
      Huang, W. G., 2014. Study on Comprehensive Evaluation and Stable Production Technology for Underground Gasification of Residual Coal (Dissertation). China University of Mining & Technology, Xuzhou (in Chinese with English abstract).
      Huang, W. G., Wang, Z. T., 2017. Comprehensive Evaluation Model of Fuzzy Analytic Hierarchy Process with Variable Weight for Underground Coal Gasification. Journal of Xi'an University of Science and Technology, 37(4): 500-507 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-XKXB201704008.htm
      Jin, F. L., Ji, M. J., Zhang, P. C., 1998. Characteristics of Magmatic Intrusion and Prediction for Coalbed Thickness in Yonggu Mine, Huaibei Coalfield. Journal of China University of Mining & Technology, 27(2): 100-103 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGKD802.023.htm
      Khadse, A. N., 2015. Resources and Economic Analyses of Underground Coal Gasification in India. Fuel, 142: 121-128. https://doi.org/10.1016/j.fuel.2014.10.057
      Li, H. Z., Guo, G. L., Zheng, N. S., 2018. Influence of Coal Types on Overlying Strata Movement and Deformation in Underground Coal Gasification without Shaft and Prediction Method of Surface Subsidence. Process Safety and Environmental Protection, 120: 302-312. https://doi.org/10.1016/j.psep.2018.09.023
      Li, H. Z., Zha, J. F., Guo, G. L., et al., 2020. Improvement of Resource Recovery Rate for Underground Coal Gasification through the Gasifier Size Management. Journal of Cleaner Production, 259(Prepublish): 120911. https://doi.org/10.1016/j.jclepro.2020.120911
      Li, W. J., Wei, J. J., Su, Q. Q., et al., 2016. Analysis of Heat Transmission Effect of Underground Coal Gasification Process on Upper Strata of Coal Seam. Energy and Energy Conservation, (1): 3-4, 35 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SXJL201601002.htm
      Li, Y. G., Li, X. C., 2007. Weight Determination of Comprehensive Evaluation Model. Journal of Eastern Liaoning University (Social Sciences), 9(2): 92-97 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CZXB200702022.htm
      Liang, J., Zhang, Y. C., Wei, C. Y., et al., 2006. Experiment Research on Underground Coal Gasification of Xiyang Anthracite. Journal of China University of Mining & Technology, 35(1): 25-28, 34 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGKD200601005.htm
      Liu, S. Q., Li, J. G., Mei, M., et al., 2007. Groundwater Pollution from Underground Coal Gasification. Journal of China University of Mining & Technology, 17(4): 467-472. http://www.cnki.com.cn/Article/CJFDTotal-ZHKD200704007.htm
      Liu, S. Q., Liang, J., Yu, X. D., et al., 2003. Characteristics of Underground Gasification of Different Kinds of Coal. Journal of China University of Mining & Technology, 32(6): 624-628 (in Chinese with English abstract).
      Liu, S. Q., Shi, S. Z., Feng, G. X., et al., 2019. Geological Site Selection and Evaluation for Underground Coal Gasification. Journal of China Coal Society, 44(8): 2531-2538 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-MTXB201908028.htm
      Liu, S. Q., Zhang, S. J., Niu, M. F., et al., 2016. Technology Process and Application Prospect of Underground Coal Gasification. Earth Science Frontiers, 23(3): 97-102 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201603016.htm
      Liu, S. Q., Zhou, R., Pan, J., et al., 2013. Location Selection and Groundwater Pollution Prevention & Control Regarding Underground Coal Gasification. Coal Science and Technology, 41(5): 23-27, 62 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MTKJ201305005.htm
      Luo, W., Yang, X. L., Ning, L. Y., et al., 2019. Pollution Status and Characteristics of Main Carbonate Aquifers in Guizhou Province. Earth Science, 44(9): 2851-2861 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201909004.htm
      Nieć, M., Sermet, E., Chećko, J., et al., 2017. Evaluation of Coal Resources for Underground Gasification in Poland. Selection of Possible UCG Sites. Fuel, 208: 193-202.
      Perkins, G., 2018. Underground Coal Gasification-Part Ⅰ: Field Demonstrations and Process Performance. Progress in Energy and Combustion Science, 67: 158-187. doi: 10.1016/j.pecs.2018.02.004
      Qin, Y., Wang, Z. T., Han, L., 2019. Geological Problems in Underground Coal Gasification. Journal of China Coal Society, 44(8): 2516-2530 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-MTXB201908027.htm
      Shafirovich, E., Varma, A., 2009. Underground Coal Gasification: A Brief Review of Current Status. Industrial & Engineering Chemistry Research, 48(17): 7865-7875. https://doi.org/10.1021/ie801569r
      Sheng, Y., Benderev, A., Bukolska, D., et al., 2016. Interdisciplinary Studies on the Technical and Economic Feasibility of Deep Underground Coal Gasification with CO2 Storage in Bulgaria. Mitigation and Adaptation Strategies for Global Change, 21(4): 595-627. https://doi.org/10.1007/s11027-014-9592-1
      Vyas, D. U., Singh, R. P., 2015. Worldwide Developments in UCG and Indian Initiative. Procedia Earth and Planetary Science, 11: 29-37. https://doi.org/10.1016/j.proeps.2015.06.005
      Wang, G., Qin, Y., Xie, Y. W., et al., 2018. Coalbed Methane System Potential Evaluation and Favourable Area Prediction of Gujiao Blocks, Xishan Coalfield, Based on Multi-Level Fuzzy Mathematical Analysis. Journal of Petroleum Science and Engineering, 160: 136-151. doi: 10.1016/j.petrol.2017.10.042
      Wang, Z. Q., 2016. Establishment of Mass and Energy Balance Model in UCG Process Based on Three Zones Distribution (Dissertation). China University of Mining and Technology, Beijing (in Chinese with English abstract).
      Wu, C. F., Liu, X. L., Zhang, S. S., 2018. Construction of Index System of "Hierarchical Progressive" Geological Selection of Coalbed Methane in Multiple Seam Area of Eastern Yunnan and Western Guizhou. Journal of China Coal Society, 43(6): 1647-1653 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MTXB201806019.htm
      Xu, H., Chen, Y. P., Xin, F. D., et al., 2022. Challenges Faced by Underground Coal Gasification and Technical Countermeasures. Coal Science and Technology, 50(1): 265-274 (in Chinese with English abstract).
      Yang, D. M., Koukouzas, N., Green, M., et al., 2016. Recent Development on Underground Coal Gasification and Subsequent CO2 Storage. Journal of the Energy Institute, 89(4): 469-484. https://doi.org/10.1016/j.joei.2015.05.004
      Yang, L. H., Liang, J., Xiang, Y. Q., 2001. Study on the Reaction Kinetic Character in Underground Coal Gasification. Journal of Fuel Chemistry and Technology, 29(3): 223-227 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-RLHX200103005.htm
      Yang, L. H., Pan, X., Dong, G. M., 2013. Study on Model Test of Underground Gasification of Coking Coal. Coal Science and Technology, 41(5): 16-18, 22 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MTKJ201305003.htm
      Yao, K., Liu, H. T., Pan, X., et al., 2011. Model Test on Water Inflow of Underground Coal Gasification (UCG). Coal Conversion, 34(3): 27-30, 40 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MTZH201103007.htm
      Ye, H. J., Zhang, R. X., Wu, P., et al., 2019. Characteristics and Driving Factor of Hydrochemical Evolution in Karst Water in the Critical Zone of Liupanshui Mining Area. Earth Science, 44(9): 2887-2898 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201909007.htm
      Zhang, J. W., Chen, H. Y., 2021. Preliminary Study on Quantitative Ecological Evaluation of Exploration and Development of Ore Deposits: A Case Study of Luoboling Porphyry Copper Molybdenum Deposit, Fujian Province. Earth Science, 46(11): 3818-3828 (in Chinese with English abstract).
      Zhao, M. D., Dong, D. L., Tian, K., 2017. Change Mechanism Simulation Study of the Overlying Strata Temperature Field and Fracture Field in UCG. Journal of Mining Science and Technology, 2(1): 1-6 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYKX201701002.htm
      Zhao, Y., Huang, W. G., Xu, Q., et al., 2018. Study on Evaluation of Geological Conditions for Underground Coal Gasification: Taking Zhuzhai Minefield of Jiangsu Province as an Example. Journal of Henan Polytechnic University (Natural Science), 37(3): 1-11 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-JGXB201803001.htm
      Zhou, Z., Wang, L. X., Guo, Z. J., et al., 2020. Assessment of Coal Underground Gasification Resources in Lupanshui Coalfield, Guizhou Province. Coal Geology of China, 32(3): 27-33 (in Chinese with English abstract).
      Zou, C. N., Chen, Y. P., Kong, L. F., et al., 2019. Underground Coal Gasification and Its Strategic Significance to the Development of Natural Gas Industry in China. Petroleum Exploration and Development, 46(2): 195-204 (in Chinese with English abstract).
      陈波, 2006. 不同煤种的高温气化反应性研究(硕士学位论文). 上海: 华东理工大学.
      陈佳木, 吴志华, 刘文浩, 等, 2021. 湖南水口山多金属矿区废石堆重金属污染评价及赋存形态分析. 地球科学, 46(11): 4127-4139. doi: 10.3799/dqkx.2021.019
      葛世荣, 2017. 深部煤炭化学开采技术. 中国矿业大学学报, 46(4): 679-691. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201704001.htm
      韩磊, 秦勇, 王作棠, 2019. 煤炭地下气化炉选址的地质影响因素. 煤田地质与勘探, 47(2): 44-50. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT201902008.htm
      黄发明, 汪洋, 董志良, 等, 2019. 基于灰色关联度模型的区域滑坡敏感性评价. 地球科学, 44(2): 664-676. doi: 10.3799/dqkx.2018.175
      黄温钢, 2014. 残留煤地下气化综合评价与稳定生产技术研究(博士学位论文). 徐州: 中国矿业大学.
      黄温钢, 王作棠, 2017. 煤炭地下气化变权‒模糊层次综合评价模型. 西安科技大学学报, 37(4): 500-507. https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB201704008.htm
      金法礼, 冀明君, 张培础, 1998. 淮北煤田永固井田岩浆岩侵入特征及煤厚预测. 中国矿业大学学报, 27(2): 100-103. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD802.023.htm
      李文军, 魏家骏, 苏倩倩, 等, 2016. 煤炭地下气化过程对煤层上部岩层的传热分析. 能源与节能, (1): 3-4, 35. doi: 10.3969/j.issn.2095-0802.2016.01.002
      李因果, 李新春, 2007. 综合评价模型权重确定方法研究. 辽东学院学报(社会科学版), 9(2): 92-97. https://www.cnki.com.cn/Article/CJFDTOTAL-CZXB200702022.htm
      梁杰, 张彦春, 魏传玉, 等, 2006. 昔阳无烟煤地下气化模型试验研究. 中国矿业大学学报, 35(1): 25-28, 34. doi: 10.3321/j.issn:1000-1964.2006.01.006
      刘淑琴, 梁杰, 余学东, 等, 2003. 不同煤种地下气化特性研究. 中国矿业大学学报, 32(6): 624-628. doi: 10.3321/j.issn:1000-1964.2003.06.006
      刘淑琴, 师素珍, 冯国旭, 等, 2019. 煤炭地下气化地质选址原则与案例评价. 煤炭学报, 44(8): 2531-2538. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908028.htm
      刘淑琴, 张尚军, 牛茂斐, 等, 2016. 煤炭地下气化技术及其应用前景. 地学前缘, 23(3): 97-102. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201603016.htm
      刘淑琴, 周蓉, 潘佳, 等, 2013. 煤炭地下气化选址决策及地下水污染防控. 煤炭科学技术, 41(5): 23-27, 62. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201305005.htm
      罗维, 杨秀丽, 宁黎元, 等, 2019. 贵州主要碳酸盐岩含水层污染现状与特征. 地球科学, 44(9): 2851-2861. doi: 10.3799/dqkx.2019.178
      秦勇, 王作棠, 韩磊, 2019. 煤炭地下气化中的地质问题. 煤炭学报, 44(8): 2516-2530. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908027.htm
      王张卿, 2016. 基于三区分布的煤炭地下气化物料与能量平衡模型的构建(博士学位论文). 北京: 中国矿业大学.
      吴财芳, 刘小磊, 张莎莎, 2018. 滇东黔西多煤层地区煤层气"层次递阶"地质选区指标体系构建. 煤炭学报, 43(6): 1647-1653. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201806019.htm
      许浩, 陈艳鹏, 辛福东, 等, 2022. 煤炭地下气化面临的挑战与技术对策. 煤炭科学技术, 50(1): 265-274. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202201027.htm
      杨兰和, 梁杰, 项友谦, 2001. 煤炭地下气化反应动力学特性的研究. 燃料化学学报, 29(3): 223-227. doi: 10.3969/j.issn.0253-2409.2001.03.006
      杨兰和, 潘霞, 董贵明, 2013. 焦煤地下气化模型试验研究. 煤炭科学技术, 41(5): 16-18, 22. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201305003.htm
      姚凯, 刘洪涛, 潘霞, 等, 2011. 涌入水对煤炭地下气化影响的模型实验研究. 煤炭转化, 34(3): 27-30, 40. doi: 10.3969/j.issn.1004-4248.2011.03.006
      叶慧君, 张瑞雪, 吴攀, 等, 2019. 六盘水矿区关键带岩溶水水化学演化特征及驱动因子. 地球科学, 44(9): 2887-2898. doi: 10.3799/dqkx.2019.201
      张纪伟, 陈华勇, 2021. 金属矿床勘查与开发定量生态评估体系初探: 以福建罗卜岭斑岩型铜钼矿为例. 地球科学, 46(11): 3818-3828. doi: 10.3799/dqkx.2020.373
      赵明东, 董东林, 田康, 2017. 煤炭地下气化覆岩温度场和裂隙场变化机制模拟研究. 矿业科学学报, 2(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX201701002.htm
      赵岳, 黄温钢, 徐强, 等, 2018. 煤炭地下气化地质条件评价研究: 以江苏省朱寨井田为例. 河南理工大学学报(自然科学版), 37(3): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB201803001.htm
      周泽, 汪凌霞, 郭志军, 等, 2020. 贵州省六盘水煤田煤炭地下气化资源评价. 中国煤炭地质, 32(3): 27-33. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT202003006.htm
      邹才能, 陈艳鹏, 孔令峰, 等, 2019. 煤炭地下气化及对中国天然气发展的战略意义. 石油勘探与开发, 46(2): 195-204. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201902002.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Tables(4)

      Article views (1747) PDF downloads(88) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return