Citation: | Jiang Mingming, Fu Xiaofei, Shi Lei, Li Jianda, Wang Jieming, Jin Yejun, Zhu Huayin, Wang Haixue, Du Ruishan, Meng Lingdong, 2022. Physical Analogue Experiment of Microstructure and Variation Law of Permeability within Faults in High-Porosity Sandstone. Earth Science, 47(5): 1805-1818. doi: 10.3799/dqkx.2021.113 |
Anyim, K., Gan, Q., 2020. Fault Zone Exploitation in Geothermal Reservoirs: Production Optimization, Permeability Evolution and Induced Seismicity. Advances in Geo-Energy Research, 4(1): 1-12. https://doi.org/10.26804/ager.2020.01.01
|
Ballas, G., Fossen, H., Soliva, R., 2015. Factors Controlling Permeability of Cataclastic Deformation Bands and Faults in Porous Sandstone Reservoirs. Journal of Structural Geology, 76: 1-21. https://doi.org/10.1016/j.jsg.2015.03.013
|
Barla, G., Barla, M., Martinotti, M. E., 2010. Development of a New Direct Shear Testing Apparatus. Rock Mechanics and Rock Engineering, 43(1): 117-122. https://doi.org/10.1007/s00603-009-0041-5
|
Chen, G. H., Lu, S. F., Liu, K. Y., et al., 2020. Occurrence State and Micro Mechanisms of Shale Gas on Pore Walls. Earth Science, 45(5): 1782-1790 (in Chinese with English abstract).
|
Crawford, B. R., Faulkner, D. R., Rutter, E. H., 2008. Strength, Porosity, and Permeability Development during Hydrostatic and Shear Loading of Synthetic Quartz-Clay Fault Gouge. Journal of Geophysical Research, 113(B3): B03207. https://doi.org/10.1029/2006JB004634
|
Cuisiat, F., Skurtveit, E., 2009. An Experimental Investigation of the Development and Permeability of Clay Smears along Faults in Uncemented Sediments. Journal of Structural Geology, 32(11): 1850-1863. https://doi.org/10.1016/j.jsg.2009.12.005
|
Deng, S., Zuo, L., Aydin, A., et al., 2015. Permeability Characterization of Natural Compaction Bands Using Core Flooding Experiments and Three-Dimensional Image-Based Analysis: Comparing and Contrasting the Results from Two Different Methods. AAPG Bulletin, 99(1): 27-49. https://doi.org/10.1306/07071413211
|
Elkhoury, J. E., Niemeijer, A., Brodsky, E. E., et al., 2011. Laboratory Observations of Permeability Enhancement by Fluid Pressure Oscillation of In Situ Fractured Rock. Journal of Geophysical Research: Solid Earth, 116(B2): B02311.
|
Exner, U., Grasemann, B., 2010. Deformation Bands in Gravels: Displacement Gradients and Heterogeneous Strain. Journal of the Geological Society, 167: 905-913. doi: 10.1144/0016-76492009-076
|
Fisher, Q. J., Casey, M., Harris, S. D., et al., 2003. Fluid-Flow Properties of Faults in Sandstone: The Importance of Temperature History. Geology, 31(11): 965-968. https://doi.org/10.1130/G19823.1
|
Fisher, Q. J., Haneef, J., Grattoni, C. A., et al., 2018. Permeability of Fault Rocks in Siliciclastic Reservoirs: Recent Advances. Marine and Petroleum Geology, 91: 29-42. https://doi.org/10.1016/j.marpetgeo.2017.12.019
|
Fisher, Q. J., Knipe, R. J., 2001. The Permeability of Faults within Siliciclastic Petroleum Reservoirs of the North Sea and Norwegian Continental Shelf. Marine and Petroleum Geology, 18(10): 1063-1081. https://doi.org/10.1016/S0264-8172(01)00042-3
|
Fu, R. Z., 2017. Quantitative Predict the Subseismic Faults and Study the Effect of Subseismic Faults on Injection and Production (Dissertation). Northeast Petroleum University, Daqing (in Chinese with English abstract).
|
Fu, X. F., Xiao, J. H., Meng, L. D., 2014. Fault Deformation Mechanisms and Internal Structure Characteristics of Fault Zone in Pure Sandstone. Journal of Jilin University (Earth Science Edition), 44(1): 25-37 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ201401003.htm
|
Fu, X. F., Xu, P., Wei, C. Z., et al., 2012. Internal Structure of Normal Fault Zone and Hydrocarbon Migration and Conservation. Earth Science Frontiers, 19(6): 200-212 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201206025.htm
|
Fulljames, J. R., Zijerveld, L. J. J., Franssen, R. C. M. W., 1997. Fault Seal Processes: Systematic Analysis of Fault Seals over Geological and Production Time Scales. Norwegian Petroleum Society Special Publications, 7: 51-59. https://doi.org/10.1016/S0928-8937(97)80006-9
|
Gibson, R. G., 1998. Physical Character and Fluid-Flow Properties of Sandstone-Derived Fault Zones. Geological Society, London, Special Publications, 127(1): 83-97. https://doi.org/10.1144/gsl.sp.1998.127.01.07
|
Giger, S. B., Clennell, M. B., Harbers, C., et al., 2011. Design, Operation and Validation of a New Fluid-Sealed Direct Shear Apparatus Capable of Monitoring Fault-Related Fluid Flow to Large Displacements. International Journal of Rock Mechanics and Mining Sciences, 48: 1160-1172. https://doi.org/10.1016/j.ijrmms.2011.09.005
|
Gong, L., Wang, J., Gao, S., et al., 2021. Characterization, Controlling Factors and Evolution of Fracture Effectiveness in Shale Oil Reservoirs. Journal of Petroleum Science and Engineering, 203: 108655. https://doi.org/ 10.1016/j.petrol.2021.108655
|
Jia, R., Fu, X. F., Meng, L. D., et al., 2017. Transformation Mechanism of Fault and Its Associated Microstructures for Different Kinds of Reservoirs. Acta Petrolei Sinica, 38(3): 286-296 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201703005.htm
|
Knipe, R. J., 1992. Faulting Processes and Fault Seal. Norwegian Petroleum Society Special Publications, 1(C): 325-342.
|
Li, L., Liu, A. W., Qi, Z. X., et al., 2020. Pore Structure Characteristics of Shale Reservoir of the Lower Qian 4 Member in the Wangchang Anticline of the Qianjiang Sag. Earth Science, 45(2): 602-616 (in Chinese with English abstract).
|
Li, Y., Li, Z. D., Yu, Y. N., et al., 2009. Identifying Small Faults by Coherent Body Technique: A Case Study for Fang 231 Area of Song Fang-Tun Oilfield. Petroleum Geophysics, (2): 25-28 (in Chinese with English abstract).
|
Liu, Z. D., Fu, X. F., Meng, L. D., et al., 2017. Types, Characteristics and Genetic Mechanism of Deformation Bands in High-Porous Sandstone. Journal of China University of Mining & Technology, 46(6): 1267-1281 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZGKD201706012.htm
|
Lu, X., Wang, Y., Yang, D., et al., 2020. Characterization of Paleo-Karst Reservoir and Faulted Karst Reservoir in Tahe Oileld, Tarim Basin, China. Advances in Geo- Energy Research, 4(3): 339-348. https://doi.org/10.46690/ager.2020.03.11
|
Meng, L. D., Fu, X. F., Lv, Y. F., et al., 2017. Risking Fault Reactivation Induced by Gas Injection into Depleted Reservoirs Based on the Heterogeneity of Geomechanical Properties of Fault Zones. Petroleum Geoscience, 23(1): 29-38. https://doi.org/10.1144/petgeo2016-031
|
Pei, Y. W., Paton, D. A., Knipe, R. J., et al., 2015. A Review of Fault Sealing Behaviour and Its Evaluation in Siliciclastic Rocks. Earth-Science Reviews, 150: 121-138. https://doi.org/10.1016/j.earscirev.2015.07.011
|
Pei, Y. W., Paton, D. A., Knipe, R. J., et al., 2020. Field-Based Investigation of Fault Architecture: A Case Study from the Lenghu Fold-and-Thrust Belt, Qaidam Basin, NE Tibetan Plateau. GSA Bulletin, 132: 389-408. https://doi.org/10.1130/B35140.1
|
Pei, Y. W., Paton, D. A., Wu, K. Y., et al., 2017. Examining Fault Architecture and Strain Distribution Using Geospatial and Geomechanical Modelling: An Example from the Qaidam Basin, NE Tibet. Marine and Petroleum Geology, 84: 1-17. https://doi.org/10.1016/j.marpetgeo.2017.03.023
|
Rotevatn, A., Fossen, H., 2011. Simulating the Effect of Subseismic Fault Tails and Process Zones in a Siliciclastic Reservoir Analogue: Implications for Aquifer Support and Trap Definition. Marine and Petroleum Geology, 28(9): 1648-1662. https://doi.org/10.1016/j.marpetgeo.2011.07.005
|
Souque, C., Knipe, R. J., Davies, R. K., et al., 2019. Fracture Corridors and Fault Reactivation: Example from the Chalk, Isle of Thanet, Kent, England. Journal of Structural Geology, 122: 11-26. https://doi.org/10.1016/j.jsg.2018.12.004
|
Takahashi, M., 2003. Permeability Change during Experimental Fault Smearing. Journal of Geophysical Research: Solid Earth, 108(B5): 2235. https://doi.org/10.1029/2002JB001984
|
Takahashi, M., Mizoguchi, K., Kitamura, K., et al., 2007. Effects of Clay Content on the Frictional Strength and Fluid Transport Property of Faults. Journal of Geophysical Research: Solid Earth, 112(B8): B08206. https://doi.org/10.1029/2006JB004678
|
Torabi, A., Braathen, A., Cuisiat, F., et al., 2007. Shear Zones in Porous Sand: Insights from Ring-Shear Experiments and Naturally Deformed Sandstones. Tectonophysics, 437(1): 37-50. https://doi.org/10.1016/j.tecto.2007.02.018
|
Wan, L., Dai, L. M., Tang, G. M., et al., 2020. Multi-Scale Characterization and Evaluation of Pore-Throat Combination Characteristics of Lacustrine Mixed Rock Reservoir. Earth Science, 45(10): 3841-3852 (in Chinese with English abstract).
|
Wang, H. X., Liu, Z. D., Sha, W., et al., 2018. Characteristics of Deformation Bands in High-Porosity Sandstone and Their Influence on Fluid Flow: A Case Study of Youshashan Anticline at the Western Margin of Qaidam Basin. Acta Petrolei Sinica, 39(5): 554-563 (in Chinese with English abstract).
|
Wang, H. X., Lü, Y. F., Fu, X. F., et al., 2014. Fault Quality Correction and Its Role in the Oil and Gas Exploration and Development. Journal of China University of Mining & Technology, 43(3): 482-490 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGKD201403019.htm
|
Wu, K. Y., Pei, Y. W., Yin, L., et al., 2018. Structural Characteristics and Deformation Timing of the Daerbute Strike-Slip Fault in NW Junggar Basin, China. Frontiers of Earth Science, 12(3): 555-568. https://doi.org/10.1007/s11707-018-0686-z
|
Xie, L., Pei, Y. W., Li, A., et al., 2018. Implications of Meso- to Micro-Scale Deformation for Fault Sealing Capacity: Insights from the Lenghu5 Fold-and-Thrust Belt, Qaidam Basin, NE Tibetan Plateau. Journal of Asian Earth Sciences, 158: 336-351. https://doi.org/10.1016/j.jseaes.2018.03.004
|
Xu, J. P., Song, Y., Cheng, J. L., et al., 2005. Mathematics Model between Strike Length and Fault Throw of Hitch. Journal of China Coal Society, 30(1): 22-25 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MTXB200501005.htm
|
Yao, H. S., Jiang, Y. P., Liu, J., 2015. Dominant Description of Small and Micro Faults of Complex Fault Block Oilfields. Journal of Northwest University (Natural Science Edition), 45(3): 445-452 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XBDZ201503023.htm
|
Zhou, Y., Shen, B. Y., Yan, Y., et al., 2020. Nanoparticles Study on the Indosinian Xiaomei Shear Zone in the Hainan Island, China: Implication to Developmental Stage and Formation Mechanism of Nanoparticles in a Fault Zone. Journal of Earth Science, 31(5): 957-967. https://doi.org/10.1007/s12583-020-1286-x
|
陈国辉, 卢双舫, 刘可禹, 等, 2020. 页岩气在孔隙表面的赋存状态及其微观作用机理. 地球科学, 45(5): 1782-1790. doi: 10.3799/dqkx.2019.194
|
付荣智, 2017. 亚地震断层定量预测及对注水开发的影响(硕士学位论文). 大庆: 东北石油大学.
|
付晓飞, 肖建华, 孟令东, 2014. 断裂在纯净砂岩中的变形机制及断裂带内部结构. 吉林大学学报(地球科学版), 44(1): 25-37. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201401003.htm
|
付晓飞, 许鹏, 魏长柱, 等, 2012. 张性断裂带内部结构特征及油气运移和保存研究. 地学前缘, 19(6): 200-212. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201206025.htm
|
贾茹, 付晓飞, 孟令东, 等, 2017. 断裂及其伴生微构造对不同类型储层的改造机理. 石油学报, 38(3): 286-296. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201703005.htm
|
李乐, 刘爱武, 漆智先, 等, 2020. 潜江凹陷王场背斜潜四下段盐韵律层页岩储层孔隙结构特征. 地球科学, 45(2): 602-616. doi: 10.3799/dqkx.2019.220
|
李阳, 李占东, 于亚楠, 等, 2009. 相干体技术识别小断层: 以宋芳屯油田芳231区块为例. 油气地球物理, (2): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ200905013.htm
|
刘志达, 付晓飞, 孟令东, 等, 2017. 高孔隙性砂岩中变形带类型、特征及成因机制. 中国矿业大学学报, 46(6): 1267-1281. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201706012.htm
|
万琳, 代黎明, 汤国民, 等, 2020. 湖相混积岩储层孔喉组合特征多尺度表征及评价. 地球科学, 45(10): 3841-3852. doi: 10.3799/dqkx.2020.144
|
王海学, 刘志达, 沙威, 等, 2018. 高孔隙性砂岩内变形带特征及对流体流动的影响: 以柴达木盆地西缘油砂山背斜为例. 石油学报, 39(5): 554-563. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201805006.htm
|
王海学, 吕延防, 付晓飞, 等, 2014. 断裂质量校正及其在油气勘探开发中的作用. 中国矿业大学学报, 43(3): 482-490. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201403019.htm
|
许进鹏, 宋扬, 程久龙, 等, 2005. 小断层的走向长度与断距关系的数学模型. 煤炭学报, 30(1): 22-25. doi: 10.3321/j.issn:0253-9993.2005.01.005
|
姚红生, 蒋永平, 刘金, 2015. 复杂断块油田小微断层的显性描述. 西北大学学报(自然科学版), 45(3): 445-452. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ201503023.htm
|