• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 5
    May  2022
    Turn off MathJax
    Article Contents
    Jiang Mingming, Fu Xiaofei, Shi Lei, Li Jianda, Wang Jieming, Jin Yejun, Zhu Huayin, Wang Haixue, Du Ruishan, Meng Lingdong, 2022. Physical Analogue Experiment of Microstructure and Variation Law of Permeability within Faults in High-Porosity Sandstone. Earth Science, 47(5): 1805-1818. doi: 10.3799/dqkx.2021.113
    Citation: Jiang Mingming, Fu Xiaofei, Shi Lei, Li Jianda, Wang Jieming, Jin Yejun, Zhu Huayin, Wang Haixue, Du Ruishan, Meng Lingdong, 2022. Physical Analogue Experiment of Microstructure and Variation Law of Permeability within Faults in High-Porosity Sandstone. Earth Science, 47(5): 1805-1818. doi: 10.3799/dqkx.2021.113

    Physical Analogue Experiment of Microstructure and Variation Law of Permeability within Faults in High-Porosity Sandstone

    doi: 10.3799/dqkx.2021.113
    • Received Date: 2021-12-01
    • Publish Date: 2022-05-25
    • The research on the controlling factors of the oil and water sealing capacity of small-displacement faults to oil and water just scratches the surface of the problem in the process of oil and gas exploration, and it is difficult to obtain the internal structure and permeability change laws of the fault zone in different deformation processes in the field outcrop. Therefore, in this study it takes the artificial core of pure sandstone with high porosity as the research object, and uses the independently-developed "high-pressure and low-speed ring shear laboratory equipment" to carry out the experiment. After the experiment, the samples are cored for different analysis tests according to the needs, including permeability and porosity tests with overburden pressure, nano-CT scan, casting thin section analysis, etc. we have carried out several groups of ring shear experiments with effective normal stress and fault displacement as experimental variables. The research results show that macroscopically, obvious scratches and powdery cataclastic rock can be observed on the fault surface. Microscopically, the main reason for the decrease of porosity and permeability is the reduction of particle size and the directional arrangement of particles caused by the cataclastic in the fault zone. The fault zone permeability is less than 10 mD, 2~3 orders of magnitude lower than that of the host rock. With the increase of effective normal stress or sliding displacement, the cataclastic degree of fault zone increases, the particle size and pore diameter decrease, the thickness of fault zone increases, and the porosity and permeability decrease gradually. The study results lay a theoretical foundation for the study of the lateral sealing capacity of small-displacement faults in oil and gas exploration.

       

    • loading
    • Anyim, K., Gan, Q., 2020. Fault Zone Exploitation in Geothermal Reservoirs: Production Optimization, Permeability Evolution and Induced Seismicity. Advances in Geo-Energy Research, 4(1): 1-12. https://doi.org/10.26804/ager.2020.01.01
      Ballas, G., Fossen, H., Soliva, R., 2015. Factors Controlling Permeability of Cataclastic Deformation Bands and Faults in Porous Sandstone Reservoirs. Journal of Structural Geology, 76: 1-21. https://doi.org/10.1016/j.jsg.2015.03.013
      Barla, G., Barla, M., Martinotti, M. E., 2010. Development of a New Direct Shear Testing Apparatus. Rock Mechanics and Rock Engineering, 43(1): 117-122. https://doi.org/10.1007/s00603-009-0041-5
      Chen, G. H., Lu, S. F., Liu, K. Y., et al., 2020. Occurrence State and Micro Mechanisms of Shale Gas on Pore Walls. Earth Science, 45(5): 1782-1790 (in Chinese with English abstract).
      Crawford, B. R., Faulkner, D. R., Rutter, E. H., 2008. Strength, Porosity, and Permeability Development during Hydrostatic and Shear Loading of Synthetic Quartz-Clay Fault Gouge. Journal of Geophysical Research, 113(B3): B03207. https://doi.org/10.1029/2006JB004634
      Cuisiat, F., Skurtveit, E., 2009. An Experimental Investigation of the Development and Permeability of Clay Smears along Faults in Uncemented Sediments. Journal of Structural Geology, 32(11): 1850-1863. https://doi.org/10.1016/j.jsg.2009.12.005
      Deng, S., Zuo, L., Aydin, A., et al., 2015. Permeability Characterization of Natural Compaction Bands Using Core Flooding Experiments and Three-Dimensional Image-Based Analysis: Comparing and Contrasting the Results from Two Different Methods. AAPG Bulletin, 99(1): 27-49. https://doi.org/10.1306/07071413211
      Elkhoury, J. E., Niemeijer, A., Brodsky, E. E., et al., 2011. Laboratory Observations of Permeability Enhancement by Fluid Pressure Oscillation of In Situ Fractured Rock. Journal of Geophysical Research: Solid Earth, 116(B2): B02311.
      Exner, U., Grasemann, B., 2010. Deformation Bands in Gravels: Displacement Gradients and Heterogeneous Strain. Journal of the Geological Society, 167: 905-913. doi: 10.1144/0016-76492009-076
      Fisher, Q. J., Casey, M., Harris, S. D., et al., 2003. Fluid-Flow Properties of Faults in Sandstone: The Importance of Temperature History. Geology, 31(11): 965-968. https://doi.org/10.1130/G19823.1
      Fisher, Q. J., Haneef, J., Grattoni, C. A., et al., 2018. Permeability of Fault Rocks in Siliciclastic Reservoirs: Recent Advances. Marine and Petroleum Geology, 91: 29-42. https://doi.org/10.1016/j.marpetgeo.2017.12.019
      Fisher, Q. J., Knipe, R. J., 2001. The Permeability of Faults within Siliciclastic Petroleum Reservoirs of the North Sea and Norwegian Continental Shelf. Marine and Petroleum Geology, 18(10): 1063-1081. https://doi.org/10.1016/S0264-8172(01)00042-3
      Fu, R. Z., 2017. Quantitative Predict the Subseismic Faults and Study the Effect of Subseismic Faults on Injection and Production (Dissertation). Northeast Petroleum University, Daqing (in Chinese with English abstract).
      Fu, X. F., Xiao, J. H., Meng, L. D., 2014. Fault Deformation Mechanisms and Internal Structure Characteristics of Fault Zone in Pure Sandstone. Journal of Jilin University (Earth Science Edition), 44(1): 25-37 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ201401003.htm
      Fu, X. F., Xu, P., Wei, C. Z., et al., 2012. Internal Structure of Normal Fault Zone and Hydrocarbon Migration and Conservation. Earth Science Frontiers, 19(6): 200-212 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201206025.htm
      Fulljames, J. R., Zijerveld, L. J. J., Franssen, R. C. M. W., 1997. Fault Seal Processes: Systematic Analysis of Fault Seals over Geological and Production Time Scales. Norwegian Petroleum Society Special Publications, 7: 51-59. https://doi.org/10.1016/S0928-8937(97)80006-9
      Gibson, R. G., 1998. Physical Character and Fluid-Flow Properties of Sandstone-Derived Fault Zones. Geological Society, London, Special Publications, 127(1): 83-97. https://doi.org/10.1144/gsl.sp.1998.127.01.07
      Giger, S. B., Clennell, M. B., Harbers, C., et al., 2011. Design, Operation and Validation of a New Fluid-Sealed Direct Shear Apparatus Capable of Monitoring Fault-Related Fluid Flow to Large Displacements. International Journal of Rock Mechanics and Mining Sciences, 48: 1160-1172. https://doi.org/10.1016/j.ijrmms.2011.09.005
      Gong, L., Wang, J., Gao, S., et al., 2021. Characterization, Controlling Factors and Evolution of Fracture Effectiveness in Shale Oil Reservoirs. Journal of Petroleum Science and Engineering, 203: 108655. https://doi.org/ 10.1016/j.petrol.2021.108655
      Jia, R., Fu, X. F., Meng, L. D., et al., 2017. Transformation Mechanism of Fault and Its Associated Microstructures for Different Kinds of Reservoirs. Acta Petrolei Sinica, 38(3): 286-296 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201703005.htm
      Knipe, R. J., 1992. Faulting Processes and Fault Seal. Norwegian Petroleum Society Special Publications, 1(C): 325-342.
      Li, L., Liu, A. W., Qi, Z. X., et al., 2020. Pore Structure Characteristics of Shale Reservoir of the Lower Qian 4 Member in the Wangchang Anticline of the Qianjiang Sag. Earth Science, 45(2): 602-616 (in Chinese with English abstract).
      Li, Y., Li, Z. D., Yu, Y. N., et al., 2009. Identifying Small Faults by Coherent Body Technique: A Case Study for Fang 231 Area of Song Fang-Tun Oilfield. Petroleum Geophysics, (2): 25-28 (in Chinese with English abstract).
      Liu, Z. D., Fu, X. F., Meng, L. D., et al., 2017. Types, Characteristics and Genetic Mechanism of Deformation Bands in High-Porous Sandstone. Journal of China University of Mining & Technology, 46(6): 1267-1281 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZGKD201706012.htm
      Lu, X., Wang, Y., Yang, D., et al., 2020. Characterization of Paleo-Karst Reservoir and Faulted Karst Reservoir in Tahe Oileld, Tarim Basin, China. Advances in Geo- Energy Research, 4(3): 339-348. https://doi.org/10.46690/ager.2020.03.11
      Meng, L. D., Fu, X. F., Lv, Y. F., et al., 2017. Risking Fault Reactivation Induced by Gas Injection into Depleted Reservoirs Based on the Heterogeneity of Geomechanical Properties of Fault Zones. Petroleum Geoscience, 23(1): 29-38. https://doi.org/10.1144/petgeo2016-031
      Pei, Y. W., Paton, D. A., Knipe, R. J., et al., 2015. A Review of Fault Sealing Behaviour and Its Evaluation in Siliciclastic Rocks. Earth-Science Reviews, 150: 121-138. https://doi.org/10.1016/j.earscirev.2015.07.011
      Pei, Y. W., Paton, D. A., Knipe, R. J., et al., 2020. Field-Based Investigation of Fault Architecture: A Case Study from the Lenghu Fold-and-Thrust Belt, Qaidam Basin, NE Tibetan Plateau. GSA Bulletin, 132: 389-408. https://doi.org/10.1130/B35140.1
      Pei, Y. W., Paton, D. A., Wu, K. Y., et al., 2017. Examining Fault Architecture and Strain Distribution Using Geospatial and Geomechanical Modelling: An Example from the Qaidam Basin, NE Tibet. Marine and Petroleum Geology, 84: 1-17. https://doi.org/10.1016/j.marpetgeo.2017.03.023
      Rotevatn, A., Fossen, H., 2011. Simulating the Effect of Subseismic Fault Tails and Process Zones in a Siliciclastic Reservoir Analogue: Implications for Aquifer Support and Trap Definition. Marine and Petroleum Geology, 28(9): 1648-1662. https://doi.org/10.1016/j.marpetgeo.2011.07.005
      Souque, C., Knipe, R. J., Davies, R. K., et al., 2019. Fracture Corridors and Fault Reactivation: Example from the Chalk, Isle of Thanet, Kent, England. Journal of Structural Geology, 122: 11-26. https://doi.org/10.1016/j.jsg.2018.12.004
      Takahashi, M., 2003. Permeability Change during Experimental Fault Smearing. Journal of Geophysical Research: Solid Earth, 108(B5): 2235. https://doi.org/10.1029/2002JB001984
      Takahashi, M., Mizoguchi, K., Kitamura, K., et al., 2007. Effects of Clay Content on the Frictional Strength and Fluid Transport Property of Faults. Journal of Geophysical Research: Solid Earth, 112(B8): B08206. https://doi.org/10.1029/2006JB004678
      Torabi, A., Braathen, A., Cuisiat, F., et al., 2007. Shear Zones in Porous Sand: Insights from Ring-Shear Experiments and Naturally Deformed Sandstones. Tectonophysics, 437(1): 37-50. https://doi.org/10.1016/j.tecto.2007.02.018
      Wan, L., Dai, L. M., Tang, G. M., et al., 2020. Multi-Scale Characterization and Evaluation of Pore-Throat Combination Characteristics of Lacustrine Mixed Rock Reservoir. Earth Science, 45(10): 3841-3852 (in Chinese with English abstract).
      Wang, H. X., Liu, Z. D., Sha, W., et al., 2018. Characteristics of Deformation Bands in High-Porosity Sandstone and Their Influence on Fluid Flow: A Case Study of Youshashan Anticline at the Western Margin of Qaidam Basin. Acta Petrolei Sinica, 39(5): 554-563 (in Chinese with English abstract).
      Wang, H. X., Lü, Y. F., Fu, X. F., et al., 2014. Fault Quality Correction and Its Role in the Oil and Gas Exploration and Development. Journal of China University of Mining & Technology, 43(3): 482-490 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGKD201403019.htm
      Wu, K. Y., Pei, Y. W., Yin, L., et al., 2018. Structural Characteristics and Deformation Timing of the Daerbute Strike-Slip Fault in NW Junggar Basin, China. Frontiers of Earth Science, 12(3): 555-568. https://doi.org/10.1007/s11707-018-0686-z
      Xie, L., Pei, Y. W., Li, A., et al., 2018. Implications of Meso- to Micro-Scale Deformation for Fault Sealing Capacity: Insights from the Lenghu5 Fold-and-Thrust Belt, Qaidam Basin, NE Tibetan Plateau. Journal of Asian Earth Sciences, 158: 336-351. https://doi.org/10.1016/j.jseaes.2018.03.004
      Xu, J. P., Song, Y., Cheng, J. L., et al., 2005. Mathematics Model between Strike Length and Fault Throw of Hitch. Journal of China Coal Society, 30(1): 22-25 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MTXB200501005.htm
      Yao, H. S., Jiang, Y. P., Liu, J., 2015. Dominant Description of Small and Micro Faults of Complex Fault Block Oilfields. Journal of Northwest University (Natural Science Edition), 45(3): 445-452 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XBDZ201503023.htm
      Zhou, Y., Shen, B. Y., Yan, Y., et al., 2020. Nanoparticles Study on the Indosinian Xiaomei Shear Zone in the Hainan Island, China: Implication to Developmental Stage and Formation Mechanism of Nanoparticles in a Fault Zone. Journal of Earth Science, 31(5): 957-967. https://doi.org/10.1007/s12583-020-1286-x
      陈国辉, 卢双舫, 刘可禹, 等, 2020. 页岩气在孔隙表面的赋存状态及其微观作用机理. 地球科学, 45(5): 1782-1790. doi: 10.3799/dqkx.2019.194
      付荣智, 2017. 亚地震断层定量预测及对注水开发的影响(硕士学位论文). 大庆: 东北石油大学.
      付晓飞, 肖建华, 孟令东, 2014. 断裂在纯净砂岩中的变形机制及断裂带内部结构. 吉林大学学报(地球科学版), 44(1): 25-37. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201401003.htm
      付晓飞, 许鹏, 魏长柱, 等, 2012. 张性断裂带内部结构特征及油气运移和保存研究. 地学前缘, 19(6): 200-212. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201206025.htm
      贾茹, 付晓飞, 孟令东, 等, 2017. 断裂及其伴生微构造对不同类型储层的改造机理. 石油学报, 38(3): 286-296. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201703005.htm
      李乐, 刘爱武, 漆智先, 等, 2020. 潜江凹陷王场背斜潜四下段盐韵律层页岩储层孔隙结构特征. 地球科学, 45(2): 602-616. doi: 10.3799/dqkx.2019.220
      李阳, 李占东, 于亚楠, 等, 2009. 相干体技术识别小断层: 以宋芳屯油田芳231区块为例. 油气地球物理, (2): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ200905013.htm
      刘志达, 付晓飞, 孟令东, 等, 2017. 高孔隙性砂岩中变形带类型、特征及成因机制. 中国矿业大学学报, 46(6): 1267-1281. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201706012.htm
      万琳, 代黎明, 汤国民, 等, 2020. 湖相混积岩储层孔喉组合特征多尺度表征及评价. 地球科学, 45(10): 3841-3852. doi: 10.3799/dqkx.2020.144
      王海学, 刘志达, 沙威, 等, 2018. 高孔隙性砂岩内变形带特征及对流体流动的影响: 以柴达木盆地西缘油砂山背斜为例. 石油学报, 39(5): 554-563. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201805006.htm
      王海学, 吕延防, 付晓飞, 等, 2014. 断裂质量校正及其在油气勘探开发中的作用. 中国矿业大学学报, 43(3): 482-490. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201403019.htm
      许进鹏, 宋扬, 程久龙, 等, 2005. 小断层的走向长度与断距关系的数学模型. 煤炭学报, 30(1): 22-25. doi: 10.3321/j.issn:0253-9993.2005.01.005
      姚红生, 蒋永平, 刘金, 2015. 复杂断块油田小微断层的显性描述. 西北大学学报(自然科学版), 45(3): 445-452. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ201503023.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(13)  / Tables(3)

      Article views (1923) PDF downloads(87) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return