• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 2
    Feb.  2022
    Turn off MathJax
    Article Contents
    Shi Liangxing, Zhou Zhongfa, Zhang Heng, An Dan, Ding Shengjun, Huang Jing, Dong Hui, 2022. Sources of SO42- and NO3- and Their Disturbances to Water Rock Processes in Karst Cave Systems. Earth Science, 47(2): 607-621. doi: 10.3799/dqkx.2021.115
    Citation: Shi Liangxing, Zhou Zhongfa, Zhang Heng, An Dan, Ding Shengjun, Huang Jing, Dong Hui, 2022. Sources of SO42- and NO3- and Their Disturbances to Water Rock Processes in Karst Cave Systems. Earth Science, 47(2): 607-621. doi: 10.3799/dqkx.2021.115

    Sources of SO42- and NO3- and Their Disturbances to Water Rock Processes in Karst Cave Systems

    doi: 10.3799/dqkx.2021.115
    • Received Date: 2021-10-26
    • Publish Date: 2022-02-25
    • In order to reveal the source of SO42-and NO3-in the cave water and their influence on the hydrogeochemical process, a complete hydrological year monitoring was carried out at six monitor points in Mahuang Cave from August 2018 to July 2019. The results showed as follows: (1)The cave waters hydrochemical types are HCO3-Ca·Mg and HCO3·SO4-Ca·Mg; (2)SO42- and NO3- are mainly derived by agricultural activities, atmospheric deposition and gypsum dissolution, and their sources are different at different drip points. NO3- in the Mahuang cave is mainly caused by agricultural activities and atmospheric N deposition, while SO42- is supplemented by agricultural activities and gypsum dissolution; The SO42- and NO3- both participate in the karstification and accelerate the dissolution of bedrock; (3)Based on the estimation of hydrochemistry method and stable isotope technique, the contribution of DIC of SO42- and NO3-cave water ranges from 0.05 to 0.61. The release of DIC also changes the ion concentration in the water, causing disturbance to karstification and presenting a general pattern of Dry season > Rainy season and dripwaters > fissure water. Similarly, due to the complexity and unknowability of karst area, the combination and comparison of various methods should be paid attention to in the systematic study of karst area, so as to improve the accuracy and credibility of the study.

       

    • loading
    • Ali, H. N., Atekwana, E. A., 2011. The Effect of Sulfuric Acid Neutralization on Carbonate and Stable Carbon Isotope Evolution of Shallow Groundwater. Chemical Geology, 284(3-4): 217-228. https://doi.org/10.1016/j.chemgeo.2011.02.023
      Buckerfield, S. J., Waldron, S., Quilliam, R. S., et al., 2019. How Can We Improve Understanding of Faecal Indicator Dynamics in Karst Systems under Changing Climatic, Population, and Land Use Stressors? Research Opportunities in SW China. Science of the Total Environment, 646: 438-447. https://doi.org/10.1016/j.scitotenv.2018.07.292
      Dorale, J. A., Liu, Z., 2009. Limitations of Hendy Test Criteria in Judging the Paleoclimatic Suitability of Speleothems and the Need Forreplication. Journal of Cave and Karst Studies, 71(1): 73-80. https://doi.org/10.1016/j.jas.2009.01.001
      Elaid, M., Hind, M., Abdelmadiid, B., et al., 2020. Contribution of Hydrogeochemical and Isotopic Tools to the Management of Upper and Middle Cheliff Aquifers. Journal of Earth Science, 31(5): 993-1006. https://doi.org/10.1007/s12583-020-1293-y.
      Jody, S., Kevin, T., 2005. The Role of Sulfur in Chemical Weathering and Atmospheric CO2 Fluxes: Evidence from Major Ions, δ13CDIC and δ34SSO4in Rivers of the Canadian Cordillera. Geochimica et Cosmochimica Acta, 69(23). https://doi.org/10.1016/j.gca.2005.07.011
      Ju, X. T., Xing, G. X., Chen, X. P., et al., 2009. Reducing Environmental Risk by Improving N Management in Intensive Chinese Agricultural Systems. Proceedings of the National Academy of Sciences, 106(9): 3041-3046. https://doi.org/10.1073/pnas.0813417106
      Kuzyakov Y., 2006. Sources of CO2 Efflux from Soil and Review of Partitioning Methods. Soil Biology and Biochemistry, 38(3): 425-448. https://doi. org/10.1016/j.soilbio.2005.08.020 doi: 10.1016/j.soilbio.2005.08.020
      Li, G., Han, Z., Shen, C., et al., 2019. Distribution Characteristics and Causes of Nitrate in Waters of Typical Small Karst Catchment: A Case of the Houzhai River Catchment. Earth Science, 44(9): 2899-2908(in Chinses with English abstract).
      Li, T. Y., Li, H. C., Xiang, X. J., et al., 2012. Transportation Characteristics of δ13C in the Plants-Soil-Bedrock-Cave System in Chongqing Karst Area. Science China Earth Science, 55(4): 685-694. https://doi.org/10.1007/s11430-011-4294-y
      Li, Y., Cao, M., Jin, M., et al., 2020. Hydrochemical Characteristics and Tracing of Nitrate Sources in Quanshui River Catchment, Hubei Province. Earth Science, 45(3): 1061-1070(in Chinses with English abstract).
      Li, Y., Liu, Z., Lv, X., et al., 2017. Elemental Variation of Cave Drips during Rainfall in Rocky Desertification Areas: A Case Study of Shijiangjun Cave. Mountain Research, 35(6): 799-807(in Chinses with English abstract).
      Liu, C. Q., Li, S. L., Lang, Y. C., et al., 2006. Using δ15N and δ18O Values to Identify Nitrate Sources in Karst Ground Water, Guiyang, Southwest China. Environmental Science & Technology, 40(22): 6928-6933. https://doi.org/10.1021/es0610129
      Liu, C., Jiang, Y., Tao F., et al., 2008. Chemical Weathering of Carbonate Rocks by Sulfuric Acid and the Carbon Cycling in Southwest China. Geochimica, (4): 404-414(in Chinses with English abstract).
      Liu, Z., Li, Q., Sun, H., et al., 2007. Seasonal, Diurnal and Storm-Scale Hydrochemical Variations of Typical Epikarst Springs in Subtropical Karst Areas of SW China: Soil CO2 and Dilution Effects. Journal of Hydrology, 337(1-2): 207-223. https://https://doi.org/10.1016/j.jhydrol.2007.01.034
      Lu, L., Cheng, H., Pu, X., et al., 2015. Nitrate Behaviors and Source Apportionment in an Aquatic System from a Watershed with Intensive Agricultural Activities. Environmental Science: Processes & Impacts, 17(1): 131-144. https://doi.org/10.1039/c4em00502c
      Milanolo, S., Gabrovšek, F., Estimation of Carbon Dioxide Flux Degassing from Percolating Waters in a Karst Cave: Case Study from Bijambare Cave, Bosnia and Herzegovina. Chemie der Erde-Geochemistry, 75(4): 465-474. https://doi.org/10.1016/j.chemer.2015.10.004
      Pauwels, H., Ayraud-Vergnaud, V., Aquilina, L., et al., 2010. The Fate of Nitrogen and Sulfur in Hard-Rock Aquifers as Shown by Sulfate-Isotope Tracing. Applied Geochemistry, 25(1): 105-115. https://doi.org/10.1016/j.apgeochem.2009.11.001
      Petitta, M., Fracchiolla, D., Aravena, R., et al., 2009. Application of Isotopic and Geochemical Tools for the Evaluation of Nitrogen Cycling in an Agricultural Basin, the Fucino Plain, Central Italy. Journal of Hydrology, 372(1-4): 124-135. https://doi.org/10.1016/j.jhydrol.2009.04.009
      Pracný, P., Faimon, J., Všianský, D., et al., 2019. Evolution of Mg/Ca and Sr/Ca ratios during the Experimental Dissolution of Limestone. Chemical Geology, 523: 107-120. https://doi.org/10.1016/j.chemgeo.2019.05.040
      Silva, S.R., Ging, P. B., Lee, R.W., et al., 2002. Forensic Applications of Nitrogen and Oxygen Isotopes in Tracing Nitratesourcesin Urban Environments. Environmental Forensices, 3(2): 125-130. https://doi.org/10.1006/enfo.2002.0086
      Spence, J, Telmer, K., 2005. The Role of Sulfur in Chemical Weathering and Atmospheric CO2 Fluxes: Evidence from Major Ions, δ13CDIC, and δ34SSO4 in Rivers of the Canadian Cordillera. Geochimica et Cosmochimica Acta, 69: 5441-5458. https://doi.org/10.1016/j.gca.2005.07.011
      Tang, Y., Han, G., 2017. Water Chemistry and Sulfur Isotope of Ground/River Waterin Banzhai Small Watershed of Libo and Their Significances for Weathering. Earth and Environment, 45(1): 91-95(in Chinses with English abstract).
      Touhari, F., Meddi, M., Mehaiguene, M., et al., 2014. Hydrogeochemical Assessment of the upper Cheliff Groundwater (North West Algeria). Environmental Earth Sciences, 73(7): 3043-3061. https://doi.org/10.1007/s12665-014-3598-6
      Wang, S., Liu, C., Yeager, K.M., et al., 2009. The Spatial Distribution and Emission of Nitrous Oxide (N2O) in a Large Eutrophic Lake in Eastern China: Anthropogenic Effects. Science of the Total Environment, 407(10): 3330-3337. https://doi.org/10.1016/j.scitotenv.2008.10.037
      Wu, P., Tang, C. Y., Zhu, L. J., et al., 2009. Hydrogeochemical Characteristics of Surface Water and Groundwater in the Karst Basin, Southwest China. Hydrological Processes, 23(14): 2012-2022. https://doi.org/10.1002/hyp.7332
      Xu, L., Jiang, Y., Duan, S., et al., 2020. Quantification of Nitrate Sources to Groundwater in Karst Trough-Valley Areas Based on Dual Stable Isotopes of δ15NNO3 and δ18ONO3 and the IsoSource Model. Environmental Science, 41(8): 3637-3645(in Chinses with English abstract).
      Xu, Z., Liu, C., 2010. Water Geochemistry of the Xijiang Basin Rivers, South China: Chemical Weathering and CO2Consumption. Applied Geochemistry, 25(10): 1603-1614. https://doi.org/10.1016/j.apgeochem.2010.08.012
      Ye, H., Zhang, R., Wu, P., et al., 2019. Characteristics and Driving Factor of Hydrochemical Evolution in Karst Water in the Critical Zone of Liupanshui Mining Area. Earth Science, 44(9): 2887-2898(in Chinses with English abstract).
      Yin, C., Yang, H., Wang, J., et al., 2020. Combined Use of Stable Nitrogen and Oxygen Isotopes to Constrain the Nitrate Sources in a Karst Lake. Agriculture, Ecosystems & Environment, 303: 107089. https://doi.org/10.1016/j.agee.2020.107089
      Yu, S., Sun, P., Du, W., et al., 2015. Effect of Hydrochemistry Characteristics Under Impact of Human Activity: A Case Study in the upper Reaches of the Xijiang River Basin. Environmental Science, 36(1): 72-79(in Chinses with English abstract).
      Zhang, X., Jiang, Y., Qiu, S., et al., 2012. Agricultural Activities and Carbon Cycling in Karst Areas in Southwest China: Dissolving Carbonate Rocks and CO2 Sink. Advances in Earth Science, 27(4): 466-476(in Chinses with English abstract).
      Zhao, C., Liang, Y., Lu, H., et al., 2019. Chemical Characteristics and Environmental Significance of SO42- and Sulfur Isotope in the Karst Watershed of the Niangziguan Spring, Shanxi Province. Carsologica Sinica, 38(6): 867-875(in Chinses with English abstract).
      Zhao, M., Zeng, C., Liu, Z., Wang, S., 2010. Effect of Different Land Use/Land Cover on Karst Hydrogeochemistry: a Paired Catchment Study of Chenqi and Dengzhanhe, Puding, Guizhou, SW China. Journal of Hydrology, 388 (1-2): 121-130. https://doi.org/10.1016/j.jhydrol.2010.04.034
      李耕, 韩志伟, 申春华, 等, 2019. 典型岩溶小流域水体中硝酸盐分布特征及成因: 以普定后寨河流域为例. 地球科学, 44(9): 2899-2908. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201909008.htm
      李严, 曹明达, 靳孟贵, 等, 2020. 湖北泉水河流域水化学特征和硝酸盐来源示踪. 地球科学, 45(3): 1061-1070. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202003029.htm
      李渊, 刘子琦, 吕小溪, 等, 2017. 贵州石漠化地区降雨期间洞穴滴水的元素变化特征——以石将军洞为例. 山地学报, 35(6): 799-807. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201706006.htm
      刘丛强, 蒋颖魁, 陶发祥, 等, 2008. 西南喀斯特流域碳酸盐岩的硫酸侵蚀与碳循环. 地球化学, (4): 404-414. doi: 10.3321/j.issn:0379-1726.2008.04.014
      唐杨, 韩贵琳, 2017. 荔波板寨小流域水体硫同位素特征及其对流域风化的指示意义. 地球与环境, 45(1): 91-95. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201701013.htm
      徐璐, 蒋勇军, 段世辉, 等, 2020. 基于双同位素(δ15NNO318ONO3)和IsoSource模型的岩溶槽谷区地下水硝酸盐来源的定量示踪: 以重庆龙凤和龙车岩溶地下河系统为例. 环境科学, 41(8): 3637-3645. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201904022.htm
      叶慧君, 张瑞雪, 吴攀, 等, 2019. 六盘水矿区关键带岩溶水水化学演化特征及驱动因子. 地球科学, 44(9): 2887-2898. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201909007.htm
      于奭, 孙平安, 杜文越, 等, 2015. 人类活动影响下水化学特征的影响: 以西江中上游流域为例. 环境科学, 36(1): 72-79. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201501010.htm
      张兴波, 蒋勇军, 邱述兰, 等, 2012. 农业活动对岩溶作用碳汇的影响: 以重庆青木关地下河流域为例. 地球科学进展, 27(4): 466-476. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201204012.htm
      赵春红, 梁永平, 卢海平, 等, 2019. 娘子关泉域岩溶水SO42-、δ34S特征及其环境意义. 中国岩溶, 38(6): 867-875. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201906007.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(3)

      Article views (968) PDF downloads(62) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return