Citation: | Liu Dongsheng, Wang Xueqiu, Nie Lanshi, Zhou Jian, Liu Hanliang, Zhang Bimin, Wang Wei, Chi Qinghua, Xu Shanfa, 2022. Cobalt Geochemical Anomalies Characteristics and Genesis in China and Metallogenic Prospecting Areas Prediction. Earth Science, 47(8): 2781-2794. doi: 10.3799/dqkx.2021.128 |
Berger, V. I., Singer, D. A., Bliss, J. D., et al., 2011. Ni⁃Co Laterite Deposits of the World⁃Database and Grade and Tonnage Models. U. S. Geological Survey, Virginia, 1-3.
|
Birke, M., Rauch, U., Stummeyer, J., 2015. How Robust are Geochemical Patterns? a Comparison of Low and High Sample Density Geochemical Mapping in Germany. Journal of Geochemical Exploration, 154(6): 105-128. https://doi.org/10.1016/j.gexplo.2014.12.005
|
Bölviken, B., Kullerud, G., Loucks, R. R., 1990. Geochemical and Metallogenic Provinces: A Discussion Initiated by Results from Geochemical Mapping Across Northern Fennoscandia. Journal of Geochemical Exploration, 39(1/2): 49-90. https://doi.org/10.1016/0375⁃6742(90)90069⁃m
|
Bölviken, B., Stokke, P. R., Feder, J., et al., 1992. The Fractal Nature of Geochemical Landscapes. Journal of Geochemical Exploration, 43(2): 91-109. https://doi.org/10.1016/0375⁃6742(92)90001⁃o
|
Caritat, P. D., 2018. Continental⁃Scale Geochemical Surveys and Mineral Prospectivity: Comparison of a Trivariate and a Multivariate Approach. Journal of Geochemical Exploration, 188: 87-94. https://doi.org/10.1016/j.gexplo.2018.01.014
|
Chao, T. T., Theobald, P. K., 1976. The Significance of Secondary Iron and Manganese Oxides in Geochemical Exploration. Economic Geology, 71(8): 1560-1569. https://doi.org/10.2113/gsecongeo.71.8.1560
|
China Geological Survey, 2004. Geological Map of the People's Republic of China (1︰2 500 000). Sino Maps Press, Beijing(in Chinese).
|
Darnley, A. G., Bjorklund, A., Bolviken, B., et al., 1995. A Global Geochemical Database for Environmental and Resource Management: Final Report of IGCP Project 259. United NationsEducational, Scientific and CultureOrganization, Paris, 37-45.
|
Latunussa, C. E., Georgitzikis, K., Matos, C. T., et al. . 2020. Study on the Review of the List of Critical Raw Materials⁃Critical Raw Materials Factsheets. In: European Commission, Critical Raw Materials Factsheets. 133-156. https://doi.org/10.2873/92480
|
Feng, C. Y., Qi, F., Zhang, D. Q., et al., 2011. China's First Independent Cobalt Deposit and its Metallogenic Mechanism: Evidence from Fluid Inclusions and Isotopic Geochemistry. Acta Geologica Sinica⁃English Edition, 85(6): 1403-1418. https://doi.org/10.1111/j.1755⁃6724.2011.00595.x
|
Feng, C. Y., Zhang, D. Q., 2002. Cobalt Mineral Resources in the World and Advance of the Research on Cobalt Deposits. Geological Review, 48(6): 627-633(in Chinese with English abstract).
|
Feng, C. Y., Zhang, D. Q., Dang, X. Y., 2004. Cobalt Resources of China and Their Exploitation and Utilization. Mineral Deposits, 23(1): 93-100(in Chinese with English abstract).
|
Fordyce, F. M., Green, P. M., Simpson, P. R., 1992. Simulation of Regional Geochemical Survey Maps at Variable Sample Density. Journal of Geochemical Exploration, 49(1/2): 161-175. https://doi.org/10.1016/0375⁃6742(93)90043⁃l
|
Gunn, G., 2013. Critical Metals Handbook. British Geological Survey, Nottingham, 123-132. https://doi.org/10. 1002/9781118755341 doi: 10.1002/9781118755341
|
Hamilton, E. I., 1994. TheGeobiochemistryof Cobalt. Science of the Total Environment, 150(1-3): 7-39. https://doi.org/ 10. 1016/0048⁃9697(94)90126⁃0 doi: 10.1016/0048⁃9697(94)90126⁃0
|
Hawkes, H. E., Webb, J. S., 1962. Geochemistry in Mineral Exploration. Soil Science, 95(4): 283. https://doi.org/10.1097/00010694⁃196304000⁃00016
|
Horn, S., Gunn, A. G., Petavratzi, E., et al., 2021. Cobalt Resources in Europe and the Potential for New Discoveries. Ore Geology Reviews, 130(3): 103915. https://doi.org/10.1016/j.oregeorev.2020.103915
|
Knox⁃Robinson, C. M., Wyborn, L. A. I., 1997. Towards a Holistic Exploration Strategy: Using Geographic Information Systems as a Tool to Enhance Exploration. Australian Journal of Earth Sciences, 44(4): 453-463. https://doi.org/10.1080/08120099708728326
|
Liu, D. S., 2021. Comparison of Geochemical Patterns from Different Sampling Density Geochemical Mapping in Altay, Xinjiang Province, China. Journal of Geochemical Exploration, 228(6): 106761. https://doi.org/10.1016/j.gexplo.2021.106761
|
Liu, D. S., Wang, X. Q., Zhou, J., et al., 2020. Characteristics of China's Cobalt Geochemical Baselines and Their Influence Factors. Acta Geosci Sinica, 41(6): 807-817(in Chinese with English abstract).
|
Lou, F., Ma. H. M., Liu, Y. Y., et al., 2011. Time⁃Space Distribution and Formation Mechanism of the Mesozoic Mafic Dikes in Southeast China. Earth Science Frontiers, 18(1): 15-23(in Chinese with English abstract).
|
Luo, Z. J., Xia, M. F., Huang, W. Y., 2019. The Migration and Transformation of Cobalt in Soil⁃Plant System and Its Toxicity. Asian Journal of Ecotoxicology, 14(2): 81-90(in Chinese with English abstract).
|
Ministry of Natural Resources, 2016. National Mineral Resources Planning (2016⁃2020). http://www.mnr.gov.cn/gk/ghjh/201811/t20181101_2324927.html(in Chinese).
|
Salminen, R., Batista, M., Bidovec, M., et al., 2005. FOREGS Geochemical Atlas of Europe, Part 1: Background Information, Geochemical Atlas of Europe. Geological Survey of Finland, Espoo.
|
Schulz, K. J., DeYoung, J. H., Seal, R. R., et al., 2017. Critical Mineral Resources of the United States: Economic and Environmental Geology and Prospects for Future Supply. https://pubs.er.usgs.gov/publication/pp1802
|
Shi, J. F., Xiang, Y. C., 2000. The Scale Invariance of Geochemical Anomalies and Wide⁃Spaced Geochemical Mapping. Geology and Prospecting, 36(1): 68-74 (in Chinese with English abstract).
|
Tang, Z. L., 1996. The Main Mineraliazation Mechanism of Magma Sulfide Deposits in China. Acta Geologica Sinica, 70(3): 237-243(in Chinese with English abstract).
|
Tessier, A., Campbell, P. G. C., Bisson, M., 1979. Sequential Extraction Procedure for the Speciation of Particulate Trace Metals. Analytical Chemistry, 51(7): 844-851. https://doi.org/10.1021/ac50043a017
|
Wang, X. Q., Sun H. W., Chi. Q. H., et al., 2005. Reproducibility and Comparasionof Geochemical Anomalies. Geology in China, 32(1): 135-140(in Chinese with English abstract).
|
Wang, X. Q., Chi, Q. H., Zhou, J., et al., 2015. Reprint of "China Geochemical Baselines: Sampling Methodology". Journal of Geochemical Exploration, 154(1): 17-31. https://doi.org/10.1016/j.gexplo.2015.04.005
|
Wang, J. G., 1995. Soil Chemistry of Plant Nutrition. Beijing Agricultural University Press, Beijing, 183(in Chinese).
|
Wang, Y., 2020. Genetic Classification, Distribution and Ore Genesis of Major PGE, Co and Cr Deposits in China: A Critical Review. Chinese Science Bulletin, 65(33): 3825-3838(in Chinese with English abstract). doi: 10.1360/TB-2020-0202
|
Wang, H., Feng, C. Y., Zhang, M. Y., 2019. Characteristics and Exploration and Research Progress of Global Cobalt Deposits. Mineral Deposits, 38(4): 739-750(in Chinese with English abstract).
|
Xie, X. J., Ren, T. X., Sun, H. Z., 2012. Geochemical Atlas of China. The Geological Publishing House, Beijing (in Chinese with English abstract).
|
Yan, T. T., Wang, X. Q., Liu, D. S., et al., 2021. Continental⁃Scale Spatial Distribution of Chromium (Cr) in China and its Relationship with Ultramafic⁃Mafic Rocks and Ophiolitic Chromite Deposit. Applied Geochemistry, 126(4): 104896. https://doi.org/10.1016/j.apgeochem.2021.104896
|
Zhang, Q., Bai, J. F., Wang Y., 2012. Analytical Scheme and Quality Monitoring System for China Geochemical Baseline. Earth Science Frontiers, 19(3): 33-42(in Chinese with English abstract).
|
Zhang, H. R., Hou, Z. Q., Yang, Z. M., et al., 2020. A New Division of Genetic Types of Cobalt Deposits: Implications for Tethyan Cobalt⁃Rich Belt. Mineral Deposits, 39(3): 501-510(in Chinese with English abstract).
|
Zhao, J. X., Li, G. M., Qin, K. Z., et al., 2019. A Review of the Types and Ore Mechanism of the Cobalt Deposits. Chinese Science Bulletin, 64(24): 2484-2500(in Chinese with English abstract). doi: 10.1360/N972019-00134
|
Zhao, X. F., Li Z. K., Zhao S. R., et al., 2019. Early Creaceous Regional Scale Magmatic⁃Hydrothermal Metallogenic System at the Southern Margin of the North China Craton. Earth Science, 40(1): 52-68(in Chinese with English abstract).
|
Zou, S., Zou, F., Ning, J., et al., 2017. A Stand⁃Alone Co Mineral Deposit in Northeastern Hunan Province, South China: Its Timing, Origin of Ore Fluids and Metal Co, and Geodynamic Setting. Ore Geology Reviews, 92: 42-60. https://doi.org/10. 1016/j. oregeorev. 2017. 11. 008 doi: 10.1016/j.oregeorev.2017.11.008
|
丰成友, 张德全, 2002. 世界钻矿资源及其研究进展述评. 地质论评, 48(6): 627-633. doi: 10.3321/j.issn:0371-5736.2002.06.020
|
丰成友, 张德全, 党兴彦, 2004. 中国钴资源及其开发利用概况. 矿床地质, 23(1): 93-100. doi: 10.3969/j.issn.0258-7106.2004.01.011
|
刘东盛, 王学求, 周建, 等, 2020. 中国钴地球化学基准值特征及影响因素. 地球学报, 41(6): 807-817. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202006007.htm
|
娄峰, 马浩明, 刘延勇, 等, 2011. 中国东南部中生代基性岩脉时空分布与形成机理. 地学前缘, 18(1): 15-23. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201101004.htm
|
罗泽娇, 夏梦帆, 黄唯怡, 2019. 钴在土壤和植物系统中的迁移转化行为及其毒性. 生态毒理学报, 14(2): 81-90. https://www.cnki.com.cn/Article/CJFDTOTAL-STDL201902009.htm
|
施俊法, 向运川, 2000. 地球化学异常标度不变性与超低密度地球化学填图. 地质与勘探, 36(1): 68-74. doi: 10.3969/j.issn.0495-5331.2000.01.022
|
汤中立, 1996. 中国岩浆硫化物矿床的主要成矿机制. 地质学报, 70(3): 237-243. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199603004.htm
|
王学求, 孙宏伟, 迟清华, 等, 2005. 地球化学异常再现性与可对比性. 中国地质, 32(1): 135-140. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200501018.htm
|
王敬国, 1995. 植物营养的土壤化学. 北京: 农业大学出版社, 183.
|
王焰, 2020. 我国铂族元素、钴和铬主要矿床类型的分布特征及成矿机制. 科学通报, 65(33): 3825-3838. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202033015.htm
|
王辉, 丰成友, 张明玉, 2019. 全球钴矿资源特征及勘查研究进展. 矿床地质, 38(4): 739-750. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201904005.htm
|
谢学锦, 任天祥, 孙焕振, 2012. 中国地球化学图集. 北京: 地质出版社, 43.
|
张勤, 白金峰, 王烨, 2012. 地壳全元素配套分析方案及分析质量监控系统. 地学前缘, 19(3): 33-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201203004.htm
|
张洪瑞, 侯增谦, 杨志明, 等, 2020. 钴矿床类型划分初探及其对特提斯钴矿带的指示意义. 矿床地质, 39(3): 501-510. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202003007.htm
|
赵俊兴, 李光明, 秦克章, 等, 2019. 富含钴矿床研究进展与问题分析. 科学通报, 64(24): 2484-2500. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201924005.htm
|
赵新福, 李占轲, 赵少瑞, 等, 2019. 华北克拉通南缘早白垩世区域大规模岩浆-热液成矿系统. 地球科学, 44(1): 52-68. doi: 10.3799/dqkx.2018.372
|
中国地质调查局, 2004. 中国人民共和国地质图(1: 2 500 000). 北京: 中国地图出版社.
|
自然资源部, 2016. 全国矿产资源规划(2016-2020), 自然资源部. http://www.mnr.gov.cn/gk/ghjh/201811/t20181101_2324927.html
|