• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 9
    Sep.  2023
    Turn off MathJax
    Article Contents
    Cui Wei, Gao Deyu, Wang Xuanhao, Zhang Guike, Yang Hong, 2023. Identification of Rocky Ledge on Steep and High Slopes Based on Aerial Photogrammetry. Earth Science, 48(9): 3378-3388. doi: 10.3799/dqkx.2021.130
    Citation: Cui Wei, Gao Deyu, Wang Xuanhao, Zhang Guike, Yang Hong, 2023. Identification of Rocky Ledge on Steep and High Slopes Based on Aerial Photogrammetry. Earth Science, 48(9): 3378-3388. doi: 10.3799/dqkx.2021.130

    Identification of Rocky Ledge on Steep and High Slopes Based on Aerial Photogrammetry

    doi: 10.3799/dqkx.2021.130
    • Received Date: 2021-07-06
      Available Online: 2023-10-07
    • Publish Date: 2023-09-25
    • The rocky ledge on steep, high slopes is easy to lose stability under the action of gravity, earthquake, excavation and unloading, etc., which threatens the safety of water conservancy projects. Therefore, the early investigation of rocky ledge is of great significance. However, due to the large slope area and inconvenient traffic, the manual identification is time-consuming and dangerous. A rapid identification method for the rock ledge based on unmanned aerial vehicle (UAV) photogrammetry is proposed in this paper. This method consists of three steps: (1) Generate the point cloud model by UAV photogrammetry; (2) segment the slopes into smooth areas and non-smooth areas by kernel density estimation (KDE) of the point's normal vector, clustering the points of non-smooth areas by the density-based spatial clustering of applications with noise (DBSCAN); (3) classify the point clusters representing rocky ledge by the geometric feature. The method can identify possible rocky ledge from the whole slope, which reduces the artificial workload. The proposed method has been successfully applied to the slopes near Lianghekou hydropower station to obtain boundaries and geometric features of rocky ledges which will provide basic data for the future stability analysis.

       

    • loading
    • Bezdek, J. C., 1981. Pattern Recognition with Fuzzy Objective Function Algorithms. Springer, Boston. https://doi.org/10.1007/978-1-4757-0450-1
      Durney, D. W., 2002. The Techniques of Modern Structural Geology, Volume 3: Applications of Continuum Mechanics in Structural Geology. Tectonophysics, 344(3-4): 307-310. https://doi.org/10.1016/s0040-1951(01)00270-0
      Eker, R., Aydın, A., Hübl, J., 2018. Unmanned Aerial Vehicle (UAV)-Based Monitoring of a Landslide: Gallenzerkogel Landslide (Ybbs-Lower Austria) Case Study. Environmental Monitoring and Assessment, 190(1): 1-14. https://doi.org/10.1007/s10661-017-6402-8
      Ester, M., Kriegel, H. P., Sander, J., et al., 1996. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. The Second International Conference on Knowledge Discovery and Data Mining, Portland.
      Greif, V., Vlcko, J., 2017. Kinematic Analysis of a Rock Slope at Strecno Castle (Slovakia) Based on the Processing of the Point Cloud Generated by UAV Photogrammetry. In: Mikos, M., Tiwari, B., Yin, Y., et al., eds., Advancing Culture of Living with Landslides. Springer, Cham. https://doi.org/10.1007/978-3-319-53498-5_48
      Harwin, S., Lucieer, A., 2012. Assessing the Accuracy of Georeferenced Point Clouds Produced via Multi-View Stereopsis from Unmanned Aerial Vehicle (UAV) Imagery. Remote Sensing, 4(6): 1573-1599. https://doi.org/10.3390/rs4061573
      Kaufman, L., Rousseeuw, P. J., 1990. Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley, New York.
      Kennedy, C., Hutchinson, D. J., Lato, M., 2014. Consideration of Lidar and Photogrammetric Data Analysis Resulting from Challenging Data Collection. The 48th U. S. Rock Mechanics/Geomechanics Symposium, Minnesota.
      Kong, D. H., Wu, F. Q., Saroglou, C., 2020. Automatic Identification and Characterization of Discontinuities in Rock Masses from 3D Point Clouds. Engineering Geology, 265: 105442. https://doi.org/10.1016/j.enggeo.2019.105442
      Li, H., Yu, Z. D., Cai, X. B., et al., 2017. River Terrace Extraction Based on Unmanned Aerial Vehicle Remote Sensing. Earth Science, 42(5): 734-742 (in Chinese with English abstract).
      Lu, Z. E., Tian, Y. G., Liu, Q. W., et al., 2021. Topographical Linear Feature Extraction Method Based on Sentinel-1 and DEM in Areas with High Vegetation Coverage of Nanling. Earth Science, 46(4): 1349-1358 (in Chinese with English abstract).
      Ma, H. C., 2011. Review on Applications of LiDAR Mapping Technology to Geosciences. Earth Science, 36(2): 347-354 (in Chinese with English abstract).
      Macqueen, J. B., 1967. Some Methods for Classification and Analysis of Multivariate Observations. The 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley.
      Mora, C. F., Kwan, A. K. H., 2000. Sphericity, Shape Factor, and Convexity Measurement of Coarse Aggregate for Concrete Using Digital Image Processing. Cement and Concrete Research, 30(3): 351-358. https://doi.org/10.1016/S0008-8846(99)00259-8
      Pauly, M., Gross, M., Kobbelt, L. P., 2002. Efficient Simplification of Point-Sampled Surface. IEEE Visualization 2002 Conference, Boston. https://doi.org/10.1109/VISUAL.2002.1183771
      Qiu, J. L., Xia, Q. L., Yao, L. Q., et al., 2012. Mine Geological Modeling and Application Based on the Three-Dimensional Laser Scanner Technology. Earth Science, 37(6): 1209-1216 (in Chinese with English abstract).
      Riquelme, A. J., Abellán, A., Tomás, R., et al., 2014. A New Approach for Semi-Automatic Rock Mass Joints Recognition from 3D Point Clouds. Computers & Geosciences, 68: 38-52. https://doi.org/10.1016/j.cageo.2014.03.014
      Sabapathy, R., Sastry, V. R., Murthy, D. C. S. N., 2013. Mapping of Geological Discontinuity Using SIROVISION: A Case Study. National conference on "Present Technology and Safety Scenario in Mining & Allied Industries", Varanasi.
      Shi, X. G., Xu, J. H., Jiang, H. J., et al., 2019. Slope Stability State Monitoring and Updating of the Outang Landslide, Three Gorges Area with Time Series InSAR Analysis. Earth Science, 44(12): 4284-4292 (in Chinese with English abstract).
      Silverman, B. W., 1986. Density Estimation for Statistics and Data Analysis. Chapman and Hall, London.
      Tonini, M., Abellan, A., 2014. Rockfall Detection from Terrestrial LiDAR Point Clouds: A Clustering Approach Using R. Journal of Spatial Information Science, (8): 95-110. https://doi.org/10.5311/josis.2014.8.123
      Verhoeven, G., 2011. Taking Computer Vision Aloft: Archaeological Three-Dimensional Reconstructions from Aerial Photographs with Photoscan. Archaeological Prospection, 18(1): 67-73. https://doi.org/10.1002/arp.399
      Wang, M., Li, L. H., Liao, X. H., et al., 2019. Rapid Topographic Measurement and Three-Dimensional Numerical Modeling Method for High-Steep/Upright Slopes Based on Aerial Photography of Uav. Journal of Engineering Geology, 27(5): 1000-1009 (in Chinese with English abstract).
      Wang, S. Y., Tang, C., He, J., et al., 2016. Use of Unmanned Aerial Vehicle for Precise Investigation of Geological Hazard in Strong Seismic Zone. Journal of Engineering Geology, 24(4): 713-719 (in Chinese with English abstract).
      Zhang, K., Wu, F. Q., Sha, P., et al., 2019. Geological Cataloging Method with Oblique Photography of Uav for Open-Pit Slope and Its Application. Journal of Engineering Geology, 27(6): 1448-1455 (in Chinese with English abstract).
      Zhang, T. A., Ramakrishnan, R., Livny, M., 1996. Birch: An Efficient Data Clustering Method for Very Large. ACM SIGMOD Record, 25(2): 103-114. https://doi.org/10.1145/233269.233324
      李辉, 余忠迪, 蔡晓斌, 等, 2017. 基于无人机遥感的河流阶地提取. 地球科学, 42(5): 734-742. doi: 10.3799/dqkx.2017.061
      鲁泽恩, 田玉刚, 柳庆威, 等, 2021. 基于Sentinel-1和DEM数据的南岭高植被覆盖区地形线性特征提取方法. 地球科学, 46(4): 1349-1358. doi: 10.3799/dqkx.2020.351
      马洪超, 2011. 激光雷达测量技术在地学中的若干应用. 地球科学, 36(2): 347-354. doi: 10.3799/dqkx.2011.037
      邱俊玲, 夏庆霖, 姚凌青, 等, 2012. 基于三维激光扫描技术的矿山地质建模与应用. 地球科学, 37(6): 1209-1216. doi: 10.3799/dqkx.2012.129
      史绪国, 徐金虎, 蒋厚军, 等, 2019. 时序InSAR技术三峡库区藕塘滑坡稳定性监测与状态更新. 地球科学, 44(12): 4284-4292. doi: 10.3799/dqkx.2019.180
      王明, 李丽慧, 廖小辉, 等, 2019. 基于无人机航摄的高陡/直立边坡快速地形测量及三维数值建模方法. 工程地质学报, 27(5): 1000-1009. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201905008.htm
      王帅永, 唐川, 何敬, 等, 2016. 无人机在强震区地质灾害精细调查中的应用研究. 工程地质学报, 24(4): 713-719. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201604033.htm
      张恺, 伍法权, 沙鹏, 等, 2019. 基于无人机倾斜摄影的矿山边坡岩体结构编录方法与工程应用. 工程地质学报, 27(6): 1448-1455. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201906027.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(15)  / Tables(4)

      Article views (525) PDF downloads(48) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return