• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 4
    Apr.  2022
    Turn off MathJax
    Article Contents
    Chang Shengren, Su Jianhui, Qin Zhijun, Zhao Xinfu, 2022. Titanite Mineralogy and Its Implications for Nb Enrichment Mechanism of Alkaline Volcanic-Rock Hosted Nb Deposit in NW Hubei Province. Earth Science, 47(4): 1316-1332. doi: 10.3799/dqkx.2021.134
    Citation: Chang Shengren, Su Jianhui, Qin Zhijun, Zhao Xinfu, 2022. Titanite Mineralogy and Its Implications for Nb Enrichment Mechanism of Alkaline Volcanic-Rock Hosted Nb Deposit in NW Hubei Province. Earth Science, 47(4): 1316-1332. doi: 10.3799/dqkx.2021.134

    Titanite Mineralogy and Its Implications for Nb Enrichment Mechanism of Alkaline Volcanic-Rock Hosted Nb Deposit in NW Hubei Province

    doi: 10.3799/dqkx.2021.134
    • Received Date: 2021-02-05
      Available Online: 2022-04-29
    • Publish Date: 2022-04-25
    • The Tianbao niobium deposit, located in the Wudang area of the South Qinling belt, is a typical alkaline volcanic-rock hosted Nb deposit in China. However, the research on the origin and evolution of alkaline magma as well as the enrichment mechanism of Nb is lacking. The alkaline volcanic rocks in Tianbao can be divided into trachyte series and alkaline basalt series, which are spatially associated. In this study, it presents detailed petrography observation combined with in-situ U-Pb dating of titanite by LA-ICP-MS, and in-situ element analyses of different types of titanite by EPMA, to reveal the magma evolution and the Nb enrichment processes. The trachyte rocks have titanite U-Pb age of 432.4±4.4 Ma(n=30, MSWD=2.4), which is consistent with the zircon U-Pb age of other trachytes, mafic dykes, and carbonatite-alkaline complexes in the South Qinling belt, indicating that the study area had large-scale alkaline magmatism activation in the Early Silurian. The titanite from both trachyte and alkaline basalt rock are of magmatic and detrital origins based on their occurrences and geochemical characteristics. Most magmatic titanite grains are euhedral and coarse, and have oscillating zoning, while some grains are present in the form of small particles around the titanite phenocrysts. They have lower Al contents and Al/Fe ratios compared to detrital titanites, which are typically fragmented. The magmatic titanites in the early basaltic rock have lower concentrations of Nb2O5 (< 0.47%), Na2O (< 0.05%) and REE2O3 (< 0.87%), but have a large variety of Al2O3+ Fe2O3 (0.80%-2.91%), indicating that the Nb content in the early basaltic magma is relatively low. The magmatic titanites in the trachyte are obviously enriched in Nb2O5 (0.19%-1.50%) and REE2O3 (0.02%-4.06%). Trachytes also contain fine-grained other Nb minerals such as pyrochlore, columbite, and aeschynite, indicating that the contents of Nb are significantly increased during magma fractionation from basalt to trachyte, and eventually lead to ore-grade mineralization in trachyte.

       

    • loading
    • Aleinikoff, J.N., Wintsch, R.P., Fanning, C.M., et al., 2002. U-Pb Geochronology of Zircon and Polygenetic Titanite from the Glastonbury Complex, Connecticut, USA: An Integrated SEM, EMPA, TIMS, and SHRIMP Study. Chemical Geology, 188(1/2): 125-147. https://doi.org/10.1016/S0009-2541(02)00076-1
      Armstrong, J.T., 1991. Quantitative Elemental Analysis of Individual Microparticles with Electron Beam Instruments. In: Heinrich, K.F.J., Newbury, D.E., eds., Electron Probe Quantitation. Springer US, Boston, MA, 261-315. https://doi.org/10.1007/978-1-4899-2617-3_15
      Chakhmouradian, A.R., 2004. Crystal Chemistry and Paragenesis of Compositionally Unique (Al-, Fe-, Nb-, and Zr-Rich) Titanite from Afrikanda, Russia. American Mineralogist, 89(11-12): 1752-1762. https://doi.org/10.2138/am-2004-11-1222
      Chen, W., Lu, J., Jiang, S.Y., et al., 2018. Radiogenic Pb Reservoir Contributes to the Rare Earth Element (REE) Enrichment in South Qinling Carbonatites. Chemical Geology, 494: 80-95. https://doi.org/10.1016/j.chemgeo.2018.07.019
      Faure, M., Lin, W., Monié, P., et al., 2008. Palaeozoic Collision between the North and South China Blocks, Triassic Intracontinental Tectonics, and the Problem of the Ultrahigh-Pressure Metamorphism. Comptes Rendus Geoscience, 340(2/3): 139-150. https://doi.org/10.1016/j.crte.2007.10.007
      Frost, B.R., Chamberlain, K.R., Schumacher, J.C., 2001. Sphene (Titanite): Phase Relations and Role as a Geochronometer. Chemical Geology, 172(1/2): 131-148. https://doi.org/10.1016/S0009-2541(00)00240-0
      Gao, X.Y., Zheng, Y.F., Chen, Y.X., et al., 2012. Geochemical and U-Pb Age Constraints on the Occurrence of Polygenetic Titanites in UHP Metagranite in the Dabie Orogen. Lithos, 136/137/138/139: 93-108. https://doi.org/10.1016/j.lithos.2011.03.020
      He, Q., Zheng, Y.F., 2019. High-Temperature/Low-Pressure Metamorphism in a Continental Rift in the Northern Margin of the South China Block. Earth Science, 44(12): 4186-4194 (in Chinese with English abstract).
      Vuorinen, J.H., Hålenius, U., 2005. Nb-, Zr- and LREE-Rich Titanite from the Alnö Alkaline Complex: Crystal Chemistry and Its Importance as a Petrogenetic Indicator. Lithos, 83(1/2): 128-142. https://doi.org/10.1016/j.lithos.2005.01.008
      Hu, Z.C., Gao, S., Liu, Y.S., et al., 2008. Signal Enhancement in Laser Ablation ICP-MS by Addition of Nitrogen in the Central Channel Gas. Journal of Analytical Atomic Spectrometry, 23(8): 1093. https://doi.org/10.1039/b804760j
      Hu, Z.C., Liu, Y.S., Gao, S., et al., 2012. A "Wire" Signal Smoothing Device for Laser Ablation Inductively Coupled Plasma Mass Spectrometry Analysis. Spectrochimica Acta Part B: Atomic Spectroscopy, 78: 50-57. https://doi.org/10.1016/j.sab.2012.09.007
      King, P.L., Sham, T.K., Gordon, R.A., et al., 2013. Microbeam X-Ray Analysis of Ce3+/Ce4+ in Ti-Rich Minerals: A Case Study with Titanite (Sphene) with Implications for Multivalent Trace Element Substitution in Minerals. American Mineralogist, 98(1): 110-119. https://doi.org/10.2138/am.2013.3959
      Kohn, M.J., 2017. Titanite Petrochronology. Reviews in Mineralogy and Geochemistry, 83(1): 419-441. https://doi.org/10.2138/rmg.2017.83.13
      Li, J.K., Li, P., Wang, D.H., et al., 2019. A Review of Niobium and Tantalum Metallogenic Regularity in China. Chinese Science Bulletin, 64(15): 1545-1566 (in Chinese). doi: 10.1360/N972018-00933
      Li, J.W., Deng, X.D., Zhou, M.F., et al., 2010. Laser Ablation ICP-MS Titanite U-Th-Pb Dating of Hydrothermal Ore Deposits: A Case Study of the Tonglushan Cu-Fe-Au Skarn Deposit, SE Hubei Province, China. Chemical Geology, 270(1/2/3/4): 56-67. https://doi.org/10.1016/j.chemgeo.2009.11.005
      Liu, W.L., Liu, C.X., Yang, C., et al., 2015. Geological Characteristics and Prospecting Potential of Niobium Ore of Tianbao Area, Zhuxi, Southern Qinling. Resources Environment & Engineering, 29(6): 779-784 (in Chinese with English abstract).
      Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      Mitchell, R.H., 2015. Primary and Secondary Niobium Mineral Deposits Associated with Carbonatites. Ore Geology Reviews, 64: 626-641. https://doi.org/10.1016/j.oregeorev.2014.03.010
      Nie, X., Wang, Z.Q., Chen, L., et al., 2020. Mineralogical Constraints on Nb-REE Mineralization of the Zhujiayuan Nb (-REE) Deposit in the North Daba Mountain, South Qinling, China. Geological Journal, 55(6): 4845-4863. https://doi.org/10.1002/gj.3710
      Pan, L.C., Hu, R.Z., Bi, X.W., et al., 2018. Titanite Major and Trace Element Compositions as Petrogenetic and Metallogenic Indicators of Mo Ore Deposits: Examples from Four Granite Plutons in the Southern Yidun Arc, SW China. American Mineralogist, 103(9): 1417-1434. https://doi.org/10.2138/am-2018-6224
      Simandl, G.J., Burt, R.O., Trueman, D.L., et al., 2018. Economic Geology Models 2. Tantalum and Niobium: Deposits, Resources, Exploration Methods and Market—A Primer for Geoscientists. Geoscience Canada, 45(2): 85-96. https://doi.org/10.12789/geocanj.2018.45.135
      Su, J.H., Zhao, X.F., Li, X.C., et al., 2019. Geological and Geochemical Characteristics of the Miaoya Syenite-Carbonatite Complex, Central China: Implications for the Origin of REE-Nb-Enriched Carbonatite. Ore Geology Reviews, 113: 103101. https://doi.org/10.1016/j.oregeorev.2019.103101
      Vermeesch, P., 2018. Isoplot R: A Free and Open Toolbox for Geochronology. Geoscience Frontiers, 9(5): 1479-1493. https://doi.org/10.1016/j.gsf.2018.04.001
      Wan, J., Liu, C.X., Yang, C., et al., 2016. Geochemical Characteristics and LA-ICP-MS Zircon U-Pb Age of the Trachytic Volcanic Rocks in Zhushan Area of Southern Qinling Mountains and Their Significance. Geological Bulletin of China, 35(7): 1134-1143 (in Chinese with English abstract).
      Wang, C.Z., Yang, K.G., Xu, Y., et al., 2009. Geochemistry and LA-ICP-MS Zircon U-Pb Age of Basic Dike Swarms in North Daba Mountains and Its Tectonic Significance. Geological Science and Technology Information, 28(3): 19-26 (in Chinese with English abstract).
      Wang, K., Wang, L.X., Ma, C.Q., et al., 2021. Mineralogy and Geochemistry of the Zhuxi Nb-Rich Trachytic Rocks, South Qinling (China): Insights into the Niobium Mineralization during Magmatic-Hydrothermal Processes. Ore Geology Reviews, 138: 104346. https://doi.org/10.1016/j.oregeorev.2021.104346
      Wang, K. M., Wang, Z. Q., Zhang, Y. L., et al., 2015. Geochronology and Geochemistry of Mafic Rocks in the Xuhe, Shaanxi, China: Implications for Petrogenesis and Mantle Dynamics. Acta Geologica Sinica, 89(1): 187-202. doi: 10.1111/1755-6724.12404
      Wang, R.C., Xie, L., Chen, J., et al., 2011. Titanite as an Indicator Mineral of Tin Mineralizing Potential of Granites in the Middle Nanling Range. Geological Journal of China Universities, 17(3): 368-380 (in Chinese with English abstract).
      Wang, R.R., Xu, Z.Q., Santosh, M., et al., 2017. Petrogenesis and Tectonic Implications of the Early Paleozoic Intermediate and Mafic Intrusions in the South Qinling Belt, Central China: Constraints from Geochemistry, Zircon U-Pb Geochronology and Hf Isotopes. Tectonophysics, 712/713: 270-288. https://doi.org/10.1016/j.tecto.2017.05.021
      Wu, Y.B., 2019. Paleozoic Magmatism in the Qinling Orogen and Its Geodynamic Significance. Earth Science, 44(12): 4173-4177 (in Chinese with English abstract).
      Wu, Y.B., Zheng, Y.F., 2013. Tectonic Evolution of a Composite Collision Orogen: An Overview on the Qinling-Tongbai-Hong'an-Dabie-Sulu Orogenic Belt in Central China. Gondwana Research, 23(4): 1402-1428. https://doi.org/10.1016/j.gr.2012.09.007
      Xia, L. Q., Xia, Z. C., Li, X. M., et al., 2008. Petrogenesis of Volcanic Rocks and Basic Dike Groups of Yaolinghe Group, Yunxi Group and Wudang Mountain Group in the Eastern Part of South Qinling Mountains. Northwestern Geology, (3): 1-29 (in Chinese with English abstract).
      Xu, C., Campbell, I.H., Allen, C.M., et al., 2008. U-Pb Zircon Age, Geochemical and Isotopic Characteristics of Carbonatite and Syenite Complexes from the Shaxiongdong, China. Lithos, 105(1-2): 118-128. https://doi.org/10.1016/j.lithos.2008.03.002
      Yang, C., Liu, C.X., Liu, W.L., et al., 2017. Geochemical Characteristics of Trachyte and Nb Mineralization Process in Tianbao Township, Zhuxi County, Southern Qinling. Acta Petrologica et Mineralogica, 36(5): 605-618 (in Chinese with English abstract).
      Yao, S.Z., Ding, Z.J., Zhou, Z.G., et al., 2002. Metallogenic Systems of Qinling Orogen. Earth Science, 27(5): 599-604 (in Chinese with English abstract).
      Ying, Y.C., Chen, W., Lu, J., et al., 2017. In Situ U-Th-Pb Ages of the Miaoya Carbonatite Complex in the South Qinling Orogenic Belt, Central China. Lithos, 290/291: 159-171. https://doi.org/10.1016/j.lithos.2017.08.003
      Zhang, C. L., Gao, S., Yuan, H. L., et al., 2007. Early Paleozoic Mantle Properties in the Southern Qinling Mountains: Sr-Nd-Pb Isotopic Evidence from Ultramafic and Mafic Dike and Volcanic Rocks. Science in China (Series D), (7): 857-865 (in Chinese).
      Zhang, G.W., Dong, Y.P., Yao, A.P., 1997. The Crustal Compositions, Structures and Tectonic Evolution of the Qinling Orogenic Belt. Geology of Shaanxi, 15(2): 1-14 (in Chinese with English abstract).
      Zhang, G.W., Meng, Q.R., Lai, S.C., 1995. Tectonics and Structure of Qinling Orogenic Belt. Science in China (Series B), 25(9): 994-1003(in Chinese).
      Zhang, W., Chen, W.T., Gao, J.F., et al., 2019. Two Episodes of REE Mineralization in the Qinling Orogenic Belt, Central China: In-Situ U-Th-Pb Dating of Bastnäsite and Monazite. Mineralium Deposita, 54(8): 1265-1280. https://doi.org/10.1007/s00126-019-00875-7
      Zhu, J., Cheng, C.H., Wang, L.X., et al., 2017. Some New Knowledge Concerning Silurian Alkaline Magmatism and Related Nb-REE Mineralization in the Zhushan Region, South Qinling. Acta Petrologica et Mineralogica, 36(5): 681-690 (in Chinese with English abstract).
      Zou, X.W., Duan, Q.F., Tang, C.Y., et al., 2011. SHRIMP Zircon U-Pb Dating and Lithogeochemical Characteristics of Diabase from Zhenping Area in North Daba Mountain. Geology in China, 38(2): 282-291 (in Chinese with English abstract).
      贺强, 郑永飞, 2019. 华南陆块北缘大陆裂断带高温低压变质作用. 地球科学, 44(12): 4186-4194. doi: 10.3799/dqkx.2019.267
      李建康, 李鹏, 王登红, 等, 2019. 中国铌钽矿成矿规律. 科学通报, 64(15): 1545-1566. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201915002.htm
      刘万亮, 刘成新, 杨成, 等, 2015. 南秦岭竹溪天宝一带铌矿地质特征及找矿前景分析. 资源环境与工程, 29(6): 779-784. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK201506006.htm
      万俊, 刘成新, 杨成, 等, 2016. 南秦岭竹山地区粗面质火山岩地球化学特征、LA-ICP-MS锆石U-Pb年龄及其大地构造意义. 地质通报, 35(7): 1134-1143. doi: 10.3969/j.issn.1671-2552.2016.07.009
      王存智, 杨坤光, 徐扬, 等, 2009. 北大巴基性岩墙群地球化学特征、LA-ICP-MS锆石U-Pb定年及其大地构造意义. 地质科技情报, 28(3): 19-26. doi: 10.3969/j.issn.1000-7849.2009.03.004
      王汝成, 谢磊, 陈骏, 等, 2011. 南岭中段花岗岩中榍石对锡成矿能力的指示意义. 高校地质学报, 17(3): 368-380. doi: 10.3969/j.issn.1006-7493.2011.03.002
      吴元保, 2019. 秦岭造山带古生代岩浆作用及地球动力学意义. 地球科学, 44(12): 4173-4177. doi: 10.3799/dqkx.2019.266
      夏林圻, 夏祖春, 李向民, 等, 2008. 南秦岭东段耀岭河群、陨西群、武当山群火山岩和基性岩墙群岩石成因. 西北地质, (3): 1-29. doi: 10.3969/j.issn.1009-6248.2008.03.001
      杨成, 刘成新, 刘万亮, 等, 2017. 南秦岭竹溪县天宝乡粗面岩地球化学特征与铌成矿. 岩石矿物学杂志, 36(5): 605-618. doi: 10.3969/j.issn.1000-6524.2017.05.002
      姚书振, 丁振举, 周宗桂, 等, 2002. 秦岭造山带金属成矿系统. 地球科学, 27(5): 599-604. doi: 10.3321/j.issn:1000-2383.2002.05.020
      张成立, 高山, 袁洪林, 等, 2007. 南秦岭早古生代地幔性质: 来自超镁铁质、镁铁质岩脉及火山岩的Sr-Nd-Pb同位素证据. 中国科学(D辑), (7): 857-865. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200707000.htm
      张国伟, 董云鹏, 姚安平, 1997. 秦岭造山带基本组成与结构及其构造演化. 陕西地质, 15(2): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SXDY199702000.htm
      张国伟, 孟庆任, 赖绍聪, 1995. 秦岭造山带的结构构造. 中国科学(B辑), 25(9): 994-1003. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199509014.htm
      朱江, 程昌红, 王连训, 等, 2017. 南秦岭竹山地区早古生代碱性岩浆活动及其相关铌稀土成矿的若干认识. 岩石矿物学杂志, 36(5): 681-690. doi: 10.3969/j.issn.1000-6524.2017.05.008
      邹先武, 段其发, 汤朝阳, 等, 2011. 北大巴山镇坪地区辉绿岩锆石SHRIMP U-Pb定年和岩石地球化学特征. 中国地质, 38(2): 282-291. doi: 10.3969/j.issn.1000-3657.2011.02.005
    • 苌笙任 附表2-南秦岭地区早古生代碱性岩浆岩年龄统计.xlsx
      苌笙任 附表1-榍石电子探针分析结果.docx
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)  / Tables(2)

      Article views (1724) PDF downloads(132) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return