• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 9
    Sep.  2023
    Turn off MathJax
    Article Contents
    Wang Bilian, Wang Mingyu, Pang Yuntian, 2023. Primary Controlling Factors and Statistical Modeling of Plume Stability for BTEX in Typical Phreatic Aquifers. Earth Science, 48(9): 3454-3465. doi: 10.3799/dqkx.2021.135
    Citation: Wang Bilian, Wang Mingyu, Pang Yuntian, 2023. Primary Controlling Factors and Statistical Modeling of Plume Stability for BTEX in Typical Phreatic Aquifers. Earth Science, 48(9): 3454-3465. doi: 10.3799/dqkx.2021.135

    Primary Controlling Factors and Statistical Modeling of Plume Stability for BTEX in Typical Phreatic Aquifers

    doi: 10.3799/dqkx.2021.135
    • Received Date: 2021-08-26
      Available Online: 2023-10-07
    • Publish Date: 2023-09-25
    • Whether the groundwater pollution plume of a contaminated site or a regional area can be stabilized and the stability characteristics of the plume would directly determine the feasibility of the natural attenuation restoration. In this study, a typical aquifer structure with a phreatic aquifer, an impermeable aquifer, and a confined aquifer from top to bottom was constructed to simulate the migration and diffusion of the constant source pollution plume of phreatic water. The stable area, stable concentration and starting stable time of the groundwater pollution plume were taken as characteristic variables. Firstly, the sensitive factors were identified from numerous influence factors through sensitivity analysis method. Secondly, orthogonal experiments were used to identify the main controlling factors. Finally, the multiple regression model was used to construct the quantitative statistical relationship for characteristic variables. The results show that the common primary controlling factors are the degradation coefficient, dispersivity, seepage velocity and the source concentration. Moreover, there are adequate statistical relationships between the characteristic variables and the primary controlling factors. The statistical models characterized by different numbers of factors can be used to predict the characteristic variables. This study would provide an important basis for optimization of the site pollution control and effective remediation which are based on natural attenuation remediation.

       

    • loading
    • Bou⁃Zeid, E., El⁃Fadel, M., 2004. Parametric Sensitivity Analysis of Leachate Transport Simulations at Landfills. Waste Management, 24(7): 681-689. https://doi.org/10.1016/j.wasman.2004.03.004
      Gedeon, M., Mallants, D., 2012. Sensitivity Analysis of a Combined Groundwater Flow and Solute Transport Model Using Local–Grid Refinement: A Case Study. Mathematical Geosciences, 44(7): 881-899. https://doi.org/10.1007/s11004–012–9416–3
      Hao, J., Jia, Y. W., Zhang, Y. X., et al., 2015. Application of Orthogonal Experiment on Parameter Sensitivity Analysis of Groundwater Simulation. Yellow River, 37(9): 66-68 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-1379.2015.09.018
      Huang, F. M., Ye, Z., Yao, C., et al., 2020. Uncertainties of Landslide Susceptibility Prediction: Different Attribute Interval Divisions of Environmental Factors and Different Data⁃Based Models. Earth Science, 45(12): 4535-4549 (in Chinese with English abstract).
      Li, L., 2011. Quantifying TiO2 Abundance of Lunar Soils: Partial Least Squares and Stepwise Multiple Regression Analysis for Determining Causal Effect. Journal of Earth Science, 22(5): 549-565. https://doi.org/10.1007/s12583–011–0206–5
      Li, M. Z., Zhai, Y. Z., Zuo, R., et al., 2014. Sensitivity Analysis of Parameters in Numerical Simulation of Solute Transport in Groundwater. SouthtoNorth Water Transfers and Water Science & Technology, 12(3): 133-137 (in Chinese with English abstract).
      Li, X. N., Chen, W. P., Lü, S. D., 2022. Advancement in Researches on Technical Systems and Modes for Risk Management and Control of Contaminated Sites at Home and Aborad. Acta Pedologica Sinica, 59(1): 38-53 (in Chinese with English abstract).
      Li, Y. J., Wang, S. J., Zhang, M., et al., 2018. Research Progress of Monitored Natural Attenuation Remediation Technology for Soil and Groundwater Pollution. China Environmental Science, 38(3): 1185-1193 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6923.2018.03.047
      Lide, D. R., 1999. CRC Handbook of Chemistry and Physics. 80th Edition, CRC Press, Boca Raton.
      Ma, L., Feng, C. C., 2014. Analysis on Sustainable Utilization and Exploitation Potentiality of Shallow Groundwater Resources in Heze Yellow River Flood Plain Areas. Shandong Land and Resources, 30(2): 43-46 (in Chinese with English abstract).
      Ma, Z. F., An, D., Jiang, Y. H., et al., 2012. Simulation on Contamination Forecast and Control of Groundwater in a Certain Hazardous Waste Landfill. Environmental Science, 33(1): 64-70 (in Chinese with English abstract).
      Newell, C. J., McLeod, R. K., Gonzales, J. R., 1996. BIOSCREEN: Natural Attenuation Decision Support System. User's Manual Version 1.3. United States Environmental Protection Agency, Office of Research and Development, Washington D. C. .
      Ni, H., Liu, Y. R., Long, Z. G., 2002. Applications of Orthogonal Design to Sensitivity Analysis of Landslide. Chinese Journal of Rock Mechanics and Engineering, 21(7): 989-992 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2002.07.010
      Shao, B. R., Sun, J. C., Zhu, Y. Q., et al., 2020. Research on Gliding Distance Estimation of Loess Landslide Based on Multiple Regression: A Case Study of Tianshui Region, Gansu Province. Geological Bulletin of China, 39(12): 1993-2003 (in Chinese with English abstract). doi: 10.12097/j.issn.1671-2552.2020.12.013
      Shen, X. F., Wan, Y. Y., Wang, L. G., et al., 2021. Multiphase Flow Modeling of Natural Attenuation of Volatile Organic Compounds (VOCs) in a Petroleum Contaminated Site. Earth Science Frontiers, 28(5): 90-103 (in Chinese with English abstract).
      Su, Z. X., Gao, W. S., Du, F. L., et al., 2020. Numerical Simulation and Parameter Sensitivity Analysis of Pollutant Migration in Stratified Soil. Journal of Geological Hazards and Environment Preservation, 31(4): 53-62 (in Chinese with English abstract).
      Wang, F., Jiao, Z. H., 2014. Application of Orthogonal Design in Sensitivity Analysis of Factors Influencing Landslide Stability. Resources Environment & Engineering, 28(4): 394-397 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-1211.2014.04.004
      Wang, Y. T., Li, J. X., Xue, X. B., et al., 2021. Similarities and Differences of Main Controlling Factors of Natural High Iodine Groundwater between North China Plain and Datong Basin. Earth Science, 46(1): 308-320 (in Chinese with English abstract).
      Xiao, B., Cui, B. L., Jiang, B. F., et al., 2019. Spatial and Temporal Variations of Rainfall Erosivity in Different Topographic Regions of Shandong Province. Journal of Earth Environment, 10(3): 267-280 (in Chinese with English abstract).
      Xu, C., Ye, G. B., 2004. Parameter Sensitivity Analysis of Numerical Model by Cross Test Design Technique. Hydrogeology and Engineering Geology, 31(1): 95-97 (in Chinese with English abstract).
      Yan, Y., Wang, M. Y., Chen, J. P., et al., 2021. Lab Experiments and Numerical Simulations of 1, 2⁃DCA Remediation in Groundwater at Contaminated Sites. Earth and Environment, 49(3): 250-259 (in Chinese with English abstract).
      Yang, X. F., Wang, M. Y., Wang, L. Y., et al., 2015. Investigation of Key Controlling Factors and Numerical Simulation Uncertainty of the Groundwater Level Companying with Yongding River Ecological Restoration. Journal of University of Chinese Academy of Sciences, 32(2): 192-199 (in Chinese with English abstract).
      Zhai, Y. Z., Wang, J. S., Su, X. S., 2011. Sensitivity Analysis of Groundwater Numerical Simulation Using Orthogonal Experiment. Geotechnical Investigation & Surveying, 39(1): 46-50 (in Chinese with English abstract).
      Zhu, C. J., Li, J. X., Xie, X. J., 2021. Carbon and Sulfur Isotopic Features and Its Implications for Iodine Mobilization in Groundwater System at Datong Basin, Northern China. Earth Science, 46(12): 4480-4491 (in Chinese with English abstract).
      郝静, 贾仰文, 张永祥, 等, 2015. 应用正交试验法分析地下水流模型参数灵敏度. 人民黄河, 37(9): 66-68. https://www.cnki.com.cn/Article/CJFDTOTAL-RMHH201509021.htm
      黄发明, 叶舟, 姚池, 等, 2020. 滑坡易发性预测不确定性: 环境因子不同属性区间划分和不同数据驱动模型的影响. 地球科学, 45(12): 4535-4549. doi: 10.3799/dqkx.2020.247
      李木子, 翟远征, 左锐, 等, 2014. 地下水溶质迁移数值模型中的参数敏感性分析. 南水北调与水利科技, 12(3): 133-137. https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201403029.htm
      李笑诺, 陈卫平, 吕斯丹, 2022. 国内外污染场地风险管控技术体系与模式研究进展. 土壤学报, 59(1): 38-53. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB202201004.htm
      李元杰, 王森杰, 张敏, 等, 2018. 土壤和地下水污染的监控自然衰减修复技术研究进展. 中国环境科学, 38(3): 1185-1193. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201803052.htm
      马龙, 冯超臣, 2014. 菏泽黄泛平原地区浅层地下水资源可持续开发利用潜力分析. 山东国土资源, 30(2): 43-46. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI201402012.htm
      马志飞, 安达, 姜永海, 等, 2012. 某危险废物填埋场地下水污染预测及控制模拟. 环境科学, 33(1): 64-70. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201201013.htm
      倪恒, 刘佑荣, 龙治国, 2002. 正交设计在滑坡敏感性分析中的应用. 岩石力学与工程学报, 21(7): 989-992. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200207011.htm
      邵葆蓉, 孙即超, 朱月琴, 等, 2020. 基于多元回归的黄土滑坡滑动距离预测模型探讨——以甘肃天水地区为例. 地质通报, 39(12): 1993-2003. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202012015.htm
      沈晓芳, 万玉玉, 王利刚, 等, 2021. 基于多相流数值模拟的某石油污染场地地下水中VOCs自然衰减过程识别及能力评估. 地学前缘, 28(5): 90-103. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202105013.htm
      苏振兴, 高文生, 杜风雷, 等, 2020. 成层土中污染物迁移数值模拟及参数敏感性分析. 地质灾害与环境保护, 31(4): 53-62. https://www.cnki.com.cn/Article/CJFDTOTAL-DZHB202004011.htm
      王帆, 焦振华2014. 正交设计法在滑坡稳定性影响因素敏感性分析中的应用. 资源环境与工程, 28(4): 394-397. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK201404005.htm
      王雨婷, 李俊霞, 薛肖斌, 等, 2021. 华北平原与大同盆地原生高碘地下水赋存主控因素的异同. 地球科学, 46(1): 308-320. doi: 10.3799/dqkx.2019.261
      肖蓓, 崔步礼, 姜宝福, 等, 2019. 山东省不同地形区降雨侵蚀力时空变化特征. 地球环境学报, 10(3): 267-280. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHJ201903006.htm
      徐超, 叶观宝, 2004. 应用正交试验设计进行数值模型参数的敏感性分析. 水文地质工程地质, 31(1): 95-97. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200401023.htm
      闫龑, 王明玉, 陈建平, 等, 2021. 场地地下水1, 2‒二氯乙烷污染的修复实验与数值模拟研究. 地球与环境, 49(3): 250-259. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ202103003.htm
      杨小芳, 王明玉, 王丽亚, 等, 2015. 永定河生态修复地下水位主控因素与数值模拟预测不确定性. 中国科学院大学学报, 32(2): 192-199. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKYB201502007.htm
      翟远征, 王金生, 苏小四, 2011. 正交试验法在地下水数值模拟敏感性分析中的应用. 工程勘察, 39(1): 46-50. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201101012.htm
      朱沉静, 李俊霞, 谢先军, 2021. 大同盆地地下水中碳硫同位素组成特征及其对碘迁移富集的指示. 地球科学, 46(12): 4480-4491. doi: 10.3799/dqkx.2021.090
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)  / Tables(7)

      Article views (683) PDF downloads(32) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return