• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 8
    Sep.  2022
    Turn off MathJax
    Article Contents
    Zhang Lili, Jiang Sihong, Wang Huaikun, Meng Xiangxi, Zhang Shuai, Wu Yudong, 2022. Geochronology and Geochemical Features of the Ore-Related Granite in the Skarn Type Fe Polymetallic Deposits in Eastern Mongolia. Earth Science, 47(8): 2856-2870. doi: 10.3799/dqkx.2021.136
    Citation: Zhang Lili, Jiang Sihong, Wang Huaikun, Meng Xiangxi, Zhang Shuai, Wu Yudong, 2022. Geochronology and Geochemical Features of the Ore-Related Granite in the Skarn Type Fe Polymetallic Deposits in Eastern Mongolia. Earth Science, 47(8): 2856-2870. doi: 10.3799/dqkx.2021.136

    Geochronology and Geochemical Features of the Ore-Related Granite in the Skarn Type Fe Polymetallic Deposits in Eastern Mongolia

    doi: 10.3799/dqkx.2021.136
    • Received Date: 2021-05-13
    • Publish Date: 2022-09-25
    • In order to reveal the relationship between the ore genesis and the evolution of Mongolia⁃Okhotsk Ocean, we studied the whole rock geochemistry, U⁃Pb ages and Hf isotopes of the zircons from the ore⁃related granodiorite porphyry inthe Haraat Uul Fe⁃Zn deposit and biotite monzogranite in theTsahir Fe⁃Mo deposit. The ore⁃related granites were formed at ca. 278 Ma for the Haraat Uul Fe⁃Zn deposit and ca. 258 Ma for the Tsahir Fe⁃Mo deposit. The granitic rocks have high contents of K2O and alkali, enrichments of LREE and LILEs (K, Rb), and depletions of HFSEs (Nb, Ta, Ti), which is indicative of high⁃K calc⁃alkaline Ⅰ⁃type granites. The granodiorite porphyry of the Haraat Uul Fe⁃Zn deposit has positive εHf(t) range of 6.6~9.8 with two⁃stage depleted mantle Hf model ages of 672~877 Ma; the biotite monzogranite for the Tsahir Fe⁃Mo deposit has positive εHf(t) range of 6.9~11.1 with two⁃stage depleted mantle Hf model ages of 568~855 Ma, indicating that both of the photoliths were probably derived from a Neoproterozoic depleted mantle. Fe polymetallic mineralisation at the Haraat Uul and Tsahir areas was intimately related to the south⁃eastward subduction of the Mongol⁃Okhotsk Ocean, indirectly proved that the Mongolian⁃Okhotsk Ocean plate began to south⁃eastward subduction before 278 Ma.

       

    • loading
    • Badarch, G., Cunningham, W.D., Windley, B. F., 2002. A New Terrane Subdivision for Mongolia: Implications for the Phanerozoic Crustal Growth of Central Asia. Journal of Asian Earth Sciences, 21(1): 87-110. https://doi.org/10.1016/s1367⁃9120(2)00017⁃2
      Barth, A. P., Wooden, J. L., Tosdal, R. M., et al., 1995. Crustal Contamination in the Petrogenesis of a Calc⁃Alkalic Rock Series: Josephine Mountain Intrusion, California. Geological Society of America Bulletin, 107(2): 201. https://doi.org/10.1130/0016⁃7606(1995)107<0201:ccitpo>2.3.co;2 doi: 10.1130/0016⁃7606(1995)107<0201:ccitpo>2.3.co;2
      Blichert⁃Toft, J., Gleason, J. D., Télouk, P., et al., 1997. The Lu⁃Hf Isotope Geochemistry of Shergottites and the Evolution of the Martian Mantle⁃Crust System. Earth and Planetary Science Letters, 173(1/2): 25-39. https://doi.org/10.1016/s0012⁃821x(99)00222⁃8
      Bussien, D., Gombojav, N., Winkler, W., et al., 2011. The Mongol⁃Okhotsk Belt in Mongolia: an Appraisal of the Geodynamic Development by the Study of Sandstone Provenance and Detrital Zircons. Tectonophysics, 510(1/2): 132-150. https://doi.org/10.1016/j.tecto.2011.06.024
      Chu, N. C., Taylor, R. N., Chavagnac, V., et al., 2002. Hf Isotope Ratio Analysis Using Multi⁃Collector Inductively Coupled Plasma Mass Spectrometry: An Evaluation of Isobaric Interference Corrections. Journal of Analytical Atomic Spectrometry, 17(12): 1567-1574. https://doi.org/10.1039/b206707b
      Donskaya, T. V., Gladkochub, D. P., Mazukabzov, A. M., et al., 2013. Late Paleozoic⁃Mesozoic Subduction⁃Related Magmatism at the Southern Margin of the Siberian Continent and the 150 Million⁃Year History of the Mongol⁃Okhotsk Ocean. Journal of Asian Earth Sciences, 62(7): 79-97. https://doi.org/10.1016/j.jseaes.2012.07.023
      Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033-2048. https://doi.org/10.1093/petrology/42.11.2033
      Green, T. H., 1995. Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust⁃Mantle System. Chemical Geology, 120(3/4): 347-359. https://doi.org/10.1016/0009⁃2541(94)00145⁃x
      Griffin, W. L., Wang, X., Jackson, S. E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China: In⁃Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3/4): 237-269. https://doi.org/10.1016/s0024⁃4937(2)00082⁃8
      Hanson, G. N., 1978. The Application of Trace Elements to the Petrogenesis of Igneous Rocks of Granitic Composition. Earth and Planetary Science Letters, 38(1): 26-43. https://doi.org/10.1016/0012⁃821x(78)90124⁃3
      Hou, K. J., Li, Y. H., Tian, Y. R., 2009. In situ U⁃Pb Zircon Dating Using Laser Ablation⁃Multi Ion Counting⁃ICP⁃MS. Mineral Deposits, 28(4): 481-492 (in Chinese with English abstract).
      Hou, K. J., Li, Y. H., Zou, T. R., 2007. Laser Ablation⁃MC⁃ICP⁃MS Technique for Hf isotope Microanalysis of Zircon and Its Geological Application. Acta Petrologica Sinica, 23(10): 2595-2604 (in Chinese with English abstract).
      Irvine, T. N., Baragar, W. R. A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5): 523-548. https://doi.org/10.1139/e71⁃055
      Jiang, S. H., Han, S. J., Chen, Z. H., et al., 2019. Summary on Metallogeny of Copper Deposits in Mongolia. Geological Science and Technology Information, 38 (5): 1-19 (in Chinese with English abstract).
      Jiang, S. H., Nie, F. J., Su, Y. J., et al., 2010. Geochronology and Origin of the Erdenet Superlarge Cu⁃Mo Deposit in Mongolia. Acta Geoscientica Sinica, 31 (3): 289-306 (in Chinese with English abstract).
      Kemp, A. I. S., Hawkesworth, C. J., Foster, G. L., et al., 2007. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf⁃O Isotopes in Zircon. Science, 315(5814): 980-983. https://doi.org/10.1126/science.1136154
      Kovalenko, V. I., Yarmolucyk, V. V., Sal'nikova, E. B., et al., 2006. Geology, Geochronology, and Geodynamics of the Khan Bogd Alkali Granite Pluton in Southern Mongolia. Geotectonics, 40: 450-466. https://doi.org/10.1134/S0016852106060033.
      Li, Q., Cheng, X.Q., Chen, W., et al., 2021. Discovery of Early⁃Middle Triassic Andesite in Erguna Massif and Its Indication of Southward Subduction of Mongol⁃Okhotsk Ocean Plate. Earth Science, 46(8): 2768-2785(in Chinese with English abstract).
      Liu, H. C., Li, Y. L., He, H. Y., et al., 2018. Two⁃Phase Southward Subduction of the Mongol⁃Okhotsk Oceanic Plate Constrained by Permian⁃Jurassic Granitoids in the Erguna and Xing'an Massifs (NE China). Lithos, 304-307: 347-361. https://doi.org/10.1016/j.lithos.2018.01.016
      Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA⁃ICP⁃MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      Ludwig, K.R., 2003. User's Manual for a Geochronological Toolkit for Microsoft Excel (Isoplot/Ex version 3.0) Berkeley Geochron Center Special Publication, Californie, 71.
      Metelkin, D. V., Vernikovsky, V. A., Kazansky, A. Y., et al., 2010. Late Mesozoic Tectonics of Central Asia Based on Paleomagnetic Evidence. Gondwana Research, 18(2/3): 400-419. https://doi.org/10.1016/j.gr.2009.12.008
      Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956
      Peccerillo, A., Barberio, M. R., Yirgu, G., et al., 2003. Relationships between Mafic and Peralkaline Silicic Magmatism in Continental Rift Settings: A Petrological, Geochemical and Isotopic Study of the Gedemsa Volcano, Central Ethiopian Rift. Journal of Petrology, 44(11): 2003-2032. https://doi.org/10.1093/petrology/egg068
      Porter, T. M., 2016. The Geology, Structure and Mineralisation of the Oyu Tolgoi Porphyry Copper⁃Gold⁃Molybdenum Deposits, Mongolia: A Review. Geoscience Frontiers, 7(3): 375-407. https://doi.org/10.1016/j.gsf.2015.08.003
      Rickwood, P. C., 1989. Boundary Lines within Petrologic Diagrams which Use Oxides of Major and Minor Elements. Lithos, 22(4): 247-263. https://doi.org/10.1016/0024⁃4937(89)90028⁃5
      Roberts, M. P., Clemens, J. D., 1993. Origin of High⁃Potassium, Talc⁃Alkaline, I⁃Type Granitoids. Geology, 21(9): 825. https://doi.org/10.1130/0091⁃7613(1993)021<0825:oohpta>2.3.co;2 doi: 10.1130/0091⁃7613(1993)021<0825:oohpta>2.3.co;2
      Seltmann, R., Porter, T. M., Pirajno, F., 2014. Geodynamics and Metallogeny of the Central Eurasian Porphyry and Related Epithermal Mineral Systems: A Review. Journal of Asian Earth Sciences, 79(2): 810-841. https://doi.org/10.1016/j.jseaes.2013.03.030
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Tang, J., Xu, W. L., Wang, F., et al., 2016. Early Mesozoic Southward Subduction History of the Mongol⁃Okhotsk Oceanic Plate: Evidence from Geochronology and Geochemistry of Early Mesozoic Intrusive Rocks in the Erguna Massif, NE China. Gondwana Research, 31(5): 218-240. https://doi.org/10.1016/j.gr.2014.12.010
      Vervoort, J. D., Blichert⁃Toft, J., 1999. Evolution of the Depleted Mantle: Hf Isotope Evidence from Juvenile Rocks through Time. Geochimica et Cosmochimica Acta, 63(3/4): 533-556. https://doi.org/10.1016/s0016⁃7037(98)00274⁃9
      Wang, T., Tong, Y., Zhang, L., et al., 2017. Phanerozoic Granitoids in the Central and Eastern Parts of Central Asia and their Tectonic Significance. Journal of Asian Earth Sciences, 145(3): 368-392. https://doi.org/10.1016/j.jseaes.2017.06.029
      Watanabe, Y., Stein, H. J., 2000. Re⁃Os Ages for the Erdenet and Tsagaan Suvarga Porphyry Cu⁃Mo Deposits, Mongolia, and Tectonic Implications. Economic Geology, 95(7): 1537-1542. https://doi.org/10.2113/gsecongeo.95.7.1537
      Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295-304. https://doi.org/10.1016/0012⁃821x(83)90211⁃x
      Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A⁃Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/bf00402202
      Xiao, W. J., Brian, F. W., Shu, S., et al., 2015. A Tale of Amalgamation of three Permo⁃Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences, 43(1): 477-507. https://doi.org/10.1146/annurev⁃earth⁃060614⁃105254.
      Xu, W.L., Sun, C.Y., Tang, J., et al., 2019. Basement Nature and Tectonic Evolution of the Xing'an⁃Mongolian Orogenic Belt. Earth Science, 44(5): 1620-1646 (in Chinese with English abstract).
      Zhu, M. S., Anaad, C., Baatar, M., et al., 2015. SHRIMP Zircon U⁃Pb Dating of Tsagaan Suvarga and Shuteen Porphyry Copper Deposits: Constraints on Metallogenic Time and Tectonic Setting of Porphyry⁃Type Mineralization in South Gobi, Mongolia. Geological Bulletin of China, 34(4): 675-685 (in Chinese with English abstract).
      侯可军, 李延河, 田有荣., 2009. LA⁃MC⁃ICP⁃MS锆石微区原位U⁃Pb定年技术. 矿床地质, 28(4): 481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010
      侯可军, 李延河, 邹天人, 等, 2007. LA⁃MC⁃ICP⁃MS锆石Hf同位素的分析方法及地质应用. 岩石学报, 23(10): 2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025
      江思宏, 韩世炯, 陈郑辉, 等, 2019. 蒙古国铜矿床成矿规律. 地质科技情报. 38 (5): 1-19. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905001.htm
      江思宏, 聂凤军, 苏永江, 等, 2010. 蒙古国额尔登特特大型铜-钼矿床年代学与成因研究. 地球学报, 31(3): 289-306. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201003005.htm
      李强, 程学芹, 陈伟, 等, 2020. 额尔古纳地块早-中三叠世安山岩的发现及其对蒙古-鄂霍茨克洋南向俯冲的指示. 地球科学, 46(8): 2768-2785. doi: 10.3799/dqkx.2020.319
      许文良, 孙晨阳, 唐杰, 等, 2019. 兴蒙造山带的基底属性与构造演化过程. 地球科学, 44(5): 1620-1646. doi: 10.3799/dqkx.2019.036
      朱明帅, Anaad, C., Baatar, M., 等, 2015. 蒙古国查干苏布尔加和苏廷铜矿容矿斑岩体SHRIMP锆石U⁃Pb年龄-对南戈壁斑岩型铜矿成矿时代及成矿背景的约束. 地质通报, 34(4): 675-685. doi: 10.3969/j.issn.1671-2552.2015.04.008
    • dqkxzx-47-8-2856-附表.docx
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)

      Article views (947) PDF downloads(93) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return