Citation: | Dong Mi, Lang Xinghai, Deng Yulin, Wang Xuhui, 2022. Geochronology and Geochemistry Implications for Early Eocene Rongma Gabbros in Southern Margin of Lhasa Terrane, Tibet. Earth Science, 47(4): 1349-1370. doi: 10.3799/dqkx.2021.137 |
Ahmad, T., Harris, N., Bickle, M., et al., 2000. Isotopic Constraints on the Structural Relationships between the Lesser Himalayan Series and the High Himalayan Crystalline Series, Garhwal Himalaya. Geological Society of America Bulletin, 112(3): 467-477. https://doi.org/10.1130/0016-7606(2000)112467: icotsr>2.0.co;2 doi: 10.1130/0016-7606(2000)112<467:ICOTSR>2.0.CO;2
|
Arth, J.G., Barker, F., 1976. Rare-Earth Partitioning between Hornblende and Dacitic Liquid and Implications for the Genesis of Trondhjemitic-Tonalitic Magmas. Geology, 4(9): 534. https://doi.org/10.1130/0091-7613(1976)4534: rpbhad>2.0.co;2 doi: 10.1130/0091-7613(1976)4<534:RPBHAD>2.0.CO;2
|
Beck, R.A., Burbank, D.W., Sercombe, W.J., et al., 1996. Late Cretaceous Ophiolite Obduction and Paleocene India-Asia Collision in the Westernmost Himalaya. Geodinamica Acta, 9(2/3): 114-144. https://doi.org/10.1080/09853111.1996.11105281
|
Cao, H.W., Huang, Y., Li, G.M., et al., 2018. Late Triassic Sedimentary Records in the Northern Tethyan Himalaya: Tectonic Link with Greater India. Geoscience Frontiers, 9(1): 273-291. https://doi.org/10.1016/j.gsf.2017.04.001
|
Chu, M.F., Chung, S.L., O'Reilly, S.Y., et al., 2011. India's Hidden Inputs to Tibetan Orogeny Revealed by Hf Isotopes of Transhimalayan Zircons and Host Rocks. Earth and Planetary Science Letters, 307(3/4): 479-486. https://doi.org/10.1016/j.epsl.2011.05.020
|
Chung, S.L., Chu, M.F., Ji, J.Q., 2009. The Nature and Timing of Crustal Thickening in Southern Tibet: Geochemical and Zircon Hf Isotopic Constraints from PostCollisional Adakites. Tectonophysics, 477(1-2): 36-48. https://doi.org/10.1016/j.tecto.2009.08.008
|
Chung, S.L., Chu, M.F., Zhang, Y.Q., et al., 2005. Tibetan Tectonic Evolution Inferred from Spatial and Temporal Variations in Post-Collisional Magmatism. Earth-Science Reviews, 68(3/4): 173-196. https://doi.org/10.1016/j.earscirev.2004.05.001
|
Condie, K.C., 1999. Mafic Crustal Xenoliths and the Origin of the Lower Continental Crust. Lithos, 46(1): 95-101. https://doi.org/10.1016/S0024-4937(98)00056-5
|
Ding, H.X., Zhang, Z.M., Dong, X., et al., 2016. Early Eocene (c. 50 Ma) Collision of the Indian and Asian Continents: Constraints from the North Himalayan Metamorphic Rocks, Southeastern Tibet. Earth and Planetary Science Letters, 435: 64-73. https://doi.org/10.1016/j.epsl.2015.12.006
|
Ding, L., Kapp, P., Wan, X.Q., 2005. Paleocene-Eocene Record of Ophiolite Obduction and Initial India-Asia Collision, South Central Tibet. Tectonics, 24(3): 1-18. https://doi.org/10.1029/2004tc001729
|
Ding, L., Xu, Q., Yue, Y.H., et al., 2014. The Andean-Type Gangdese Mountains: Paleoelevation Record from the Paleocene-Eocene Linzhou Basin. Earth and Planetary Science Letters, 392: 250-264. https://doi.org/10.1016/j.epsl.2014.01.045
|
Donaldson, D.G., Webb, A.A.G., Menold, C.A., et al., 2013. Petrochronology of Himalayan Ultrahigh-Pressure Eclogite. Geology, 41(8): 835-838. https://doi.org/10.1130/g33699.1 doi: 10.1130/G33699.1
|
Dong, G.C., Mo, X.X., Zhao, Z.D., et al., 2008. Gabbros from Southern Gangdese: Implication for Mass Exchange between Mantle and Crust. Acta Petrologica Sinica, 24(2): 203-210(in Chinese with English abstract). https://www.researchgate.net/publication/285535421_Gabbros_from_southern_Gangdese_Implication_for_mass_exchange_between_mantle_and_crust
|
Dong, X., Zhang, Z.M., Liu, F., et al., 2014. Late Paleozoic Intrusive Rocks from the Southeastern Lhasa Terrane, Tibetan Plateau, and Their Late Mesozoic Metamorphism and Tectonic Implications. Lithos, 198/199: 249-262. https://doi.org/10.1016/j.lithos.2014.04.001
|
Ferrari, L., 2004. Slab Detachment Control on Mafic Volcanic Pulse and Mantle Heterogeneity in Central Mexico. Geology, 32(1): 77. https://doi.org/10.1130/g19887.1 doi: 10.1130/G19887.1
|
Frey, F.A., Green, D.H., Roy, S.D., 1978. Integrated Models of Basalt Petrogenesis: A Study of Quartz Tholeiites to Olivine Melilitites from South Eastern Australia Utilizing Geochemical and Experimental Petrological Data. Journal of Petrology, 19(3): 463-513. https://doi.org/10.1093/petrology/19.3.463
|
Guynn, J.H., Kapp, P., Pullen, A., et al., 2006. Tibetan Basement Rocks near Amdo Reveal "Missing" Mesozoic Tectonism along the Bangong Suture, Central Tibet. Geology, 34(6): 505. https://doi.org/10.1130/g22453.1 doi: 10.1130/G22453.1
|
Hawkins, J.W., Ishizuka, O., 2009. Petrologic Evolution of Palau, a Nascent Island Arc. Island Arc, 18(4): 599-641. https://doi.org/10.1111/j.1440-1738.2009.00683.x
|
Hofmann, A.W., 1988. Chemical Differentiation of the Earth: The Relationship between Mantle, Continental Crust, and Oceanic Crust. Earth and Planetary Science Letters, 90(3): 297-314. https://doi.org/10.1016/0012-821X(88)90132-X
|
Hoskin, P.W.O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. https://doi.org/10.2113/0530027
|
Hou, Z.Q., Duan, L.F., Lu, Y.J., et al., 2015. Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6): 1541-1575. https://doi.org/10.2113/econgeo.110.6.1541
|
Hu, X.M., Garzanti, E., Moore, T., et al., 2015. Direct Stratigraphic Dating of India-Asia Collision Onset at the Selandian (Middle Paleocene, 59±1 Ma). Geology, 43(10): 859-862. https://doi.org/10.1130/g36872.1 doi: 10.1130/G36872.1
|
Huang, F., Xu, J.F., Chen, J.L., et al., 2016. Two Cenozoic Tectonic Events of N-S and E-W Extension in the Lhasa Terrane: Evidence from Geology and Geochronology. Lithos, 245: 118-132. https://doi.org/10.1016/j.lithos.2015.08.014
|
Huang, F., Chen, J.L., Xu, J.F., et al., 2015. Os-Nd-Sr Isotopes in Miocene Ultrapotassic Rocks of Southern Tibet: Partial Melting of a Pyroxenite-Bearing Lithospheric Mantle? Geochimica et Cosmochimica Acta, 163: 279-298. https://doi.org/10.1016/j.gca.2015.04.053
|
Huang, F., Xu, J.F., Zeng, Y.C., et al., 2017. Slab Breakoff of the Neo-Tethys Ocean in the Lhasa Terrane Inferred from Contemporaneous Melting of the Mantle and Crust. Geochemistry, Geophysics, Geosystems, 18(11): 4074-4095. https://doi.org/10.1002/2017gc007039 doi: 10.1002/2017GC007039
|
Huw Davies, J., von Blanckenburg, F., 1995. Slab Breakoff: A Model of Lithosphere Detachment and Its Test in the Magmatism and Deformation of Collisional Orogens. Earth and Planetary Science Letters, 129(1-4): 85-102. https://doi.org/10.1016/0012-821X(94)00237-S
|
Ji, W.Q., Wu, F.Y., Chung, S.L., et al., 2009. Zircon U-Pb Geochronology and Hf Isotopic Constraints on Petrogenesis of the Gangdese Batholith, Southern Tibet. Chemical Geology, 262(3/4): 229-245. https://doi.org/10.1016/j.chemgeo.2009.01.020
|
Ji, W.Q., Wu, F.Y., Chung, S.L., et al., 2016. Eocene Neo-Tethyan Slab Breakoff Constrained by 45 Ma Oceanic Island Basalt-Type Magmatism in Southern Tibet. Geology, 44(4): 283-286. https://doi.org/10.1130/g37612.1 doi: 10.1130/G37612.1
|
Jia, L.L., Wang, Q., Zhu, D.C., et al., 2013. Rethinking the Geodynamical Implications of the Basic Rocks from Linzhou Basin, Tibet. Acta Petrologica Sinica, 29(11): 3671-3680(in Chinese with English abstract).
|
Kang, Z.Q., Xu, J.F., Wilde, S.A., et al., 2014. Geochronology and Geochemistry of the Sangri Group Volcanic Rocks, Southern Lhasa Terrane: Implications for the Early Subduction History of the Neo-Tethys and Gangdese Magmatic Arc. Lithos, 200/201: 157-168. https://doi.org/10.1016/j.lithos.2014.04.019
|
Kohn, M.J., Parkinson, C.D., 2002. Petrologic Case for Eocene Slab Breakoff during the Indo-Asian Collision. Geology, 30(7): 591. https://doi.org/10.1130/0091-7613(2002)0300591: pcfesb>2.0.co;2 doi: 10.1130/0091-7613(2002)030<0591:PCFESB>2.0.CO;2
|
La Flèche, M.R., Camiré, G., Jenner, G.A., 1998. Geochemistry of Post-Acadian, Carboniferous Continental Intraplate Basalts from the Maritimes Basin, Magdalen Islands, Québec, Canada. Chemical Geology, 148(3-4): 115-136. https://doi.org/10.1016/S0009-2541(98)00002-3
|
Lang, X.H., Deng, Y.L., Wang, X.H., et al., 2020. Geochronology and Geochemistry of Volcanic Rocks of the Bima Formation, Southern Lhasa Subterrane, Tibet: Implications for Early Neo-Tethyan Subduction. Gondwana Research, 80: 335-349. https://doi.org/10.1016/j.gr.2019.11.005
|
Lang, X.H., Tang, J.X., Li, Z.J., et al., 2014. U-Pb and Re-Os Geochronological Evidence for the Jurassic Porphyry Metallogenic Event of the Xiongcun District in the Gangdese Porphyry Copper Belt, Southern Tibet, PRC. Journal of Asian Earth Sciences, 79: 608-622. https://doi.org/10.1016/j.jseaes.2013.08.009
|
Lang, X.H., Wang, X.H., Deng, Y.L., et al., 2019. Early Jurassic Volcanic Rocks in the Xiongcun District, Southern Lhasa Subterrane, Tibet: Implications for the Tectono-Magmatic Events Associated with the Early Evolution of the Neo-Tethys Ocean. Lithos, 340/341: 166-180. https://doi.org/10.1016/j.lithos.2019.05.014
|
Langmuir, C.H., Klein, E.M., Plank, T., 1992. Petrological Systematics of Mid-Ocean Ridge Basalts: Constraints on Melt Generation beneath Ocean Ridges. Mantle Flow and Melt Generation at Mid-Ocean Ridges. In: Morgan, J.D., Blackman, D.K., Sinton, J.M., eds., Mantle Flow and Melt Generation at Mid-Ocean Ridges, Volume 71. American Geophysical Union, Washington, D. C., 183-280. https://doi.org/10.1029/gm071p0183
|
Lee, H.Y., Chung, S.L., Ji, J.Q., et al., 2012. Geochemical and Sr-Nd Isotopic Constraints on the Genesis of the Cenozoic Linzizong Volcanic Successions, Southern Tibet. Journal of Asian Earth Sciences, 53: 96-114. https://doi.org/10.1016/j.jseaes.2011.08.019
|
Lee, H.Y., Chung, S.L., Lo, C.H., et al., 2009. Eocene Neotethyan Slab Breakoff in Southern Tibet Inferred from the Linzizong Volcanic Record. Tectonophysics, 477(1-2): 20-35. https://doi.org/10.1016/j.tecto.2009.02.031
|
Li, S.H., van Hinsbergen, D.J.J., Najman, Y., et al., 2020. Does Pulsed Tibetan Deformation Correlate with Indian Plate Motion Changes? Earth and Planetary Science Letters, 536: 116144. https://doi.org/10.1016/j.epsl.2020.116144
|
Lippert, P.C., van Hinsbergen, D.J.J., Dupont-Nivet, G., 2014. Early Cretaceous to Present Latitude of the Central Proto-Tibetan Plateau: A Paleomagnetic Synthesis with Implications for Cenozoic Tectonics, Paleogeography, and Climate of Asia. Geological Society of America, 507: 1-21. https://doi.org/10.1130/2014.2507(01)
|
Liu, A.L., Wang, Q., Zhu, D.C., et al., 2018. Origin of the ca. 50 Ma Linzizong Shoshonitic Volcanic Rocks in the Eastern Gangdese Arc, Southern Tibet. Lithos, 304/305/306/307: 374-387. https://doi.org/10.1016/j.lithos.2018.02.017
|
Liu, D., Zhao, Z.D., DePaolo, D.J., et al., 2017. Potassic Volcanic Rocks and Adakitic Intrusions in Southern Tibet: Insights into Mantle-Crust Interaction and Mass Transfer from Indian Plate. Lithos, 268/269/270/271: 48-64. https://doi.org/10.1016/j.lithos.2016.10.034
|
Liu, Y.S., Hu, Z.C., Zong, K.Q., et al., 2010. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546. https://doi.org/10.1007/s11434-010-3052-4
|
Ludwig, K.R., 2003. User's Manual for Isoplot 3.6: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley.
|
Ma, X.X., Meert, J.G., Xu, Z.Q., et al., 2017. Evidence of Magma Mixing Identified in the Early Eocene Caina Pluton from the Gangdese Batholith, Southern Tibet. Lithos, 278/279/280/281: 126-139. https://doi.org/10.1016/j.lithos.2017.01.020
|
Martin, H., Smithies, R.H., Rapp, R., et al., 2005. An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid: Relationships and Some Implications for Crustal Evolution. Lithos, 79(1/2): 1-24. https://doi.org/10.1016/j.lithos.2004.04.048
|
McDonough, W.F., Sun, S.S., 1995. The Composition of the Earth. Chemical Geology, 120(3/4): 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
|
McKenzie, D., O'Nions, R.K., 1991. Partial Melt Distributions from Inversion of Rare Earth Element Concentrations. Journal of Petrology, 32(5): 1021-1091. https://doi.org/10.1093/petrology/32.5.1021
|
Meng, E., Liu, F.L., Liu, P.H., et al., 2014. Petrogenesis and Tectonic Significance of Paleoproterozoic Meta-Mafic Rocks from Central Liaodong Peninsula, Northeast China: Evidence from Zircon U-Pb Dating and In Situ Lu-Hf Isotopes, and Whole-Rock Geochemistry. Precambrian Research, 247: 92-109. https://doi.org/10.1016/j.precamres.2014.03.017
|
Meschede, M., 1986. A Method of Discriminating between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram. Chemical Geology, 56(3-4): 207-218. https://doi.org/10.1016/0009-2541(86)90004-5
|
Mo, X.X., Dong, G.C., Zhao, Z.D., et al., 2005. Spatial and Temporal Distribution and Characteristics of Granitoids in the Gangdese, Tibet and Implication for Crustal Growth and Evolution. Geological Journal of China Universities, 11(3): 281-290(in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTotal-GXDX200503001.htm
|
Mo, X.X., Niu, Y.L., Dong, G.C., et al., 2008. Contribution of Syncollisional Felsic Magmatism to Continental Crust Growth: A Case Study of the Paleogene Linzizong Volcanic Succession in Southern Tibet. Chemical Geology, 250(1-4): 49-67. https://doi.org/10.1016/j.chemgeo.2008.02.003
|
Mo, X.X., Zhao, Z.D., Deng, J.F., et al., 2003. Response of Volcanism to the India-Asia Collision. Earth Science Frontiers, 10(3): 135-148 (in Chinese with English abstract). https://www.researchgate.net/publication/302561161_Response_of_volcanism_to_the_India-Asia_collisionJ
|
Pan, G.T., Mo, X.X., Hou, Z.Q., et al., 2006. Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution. Acta Petrologica Sinica, 22(3): 521-533(in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200603001.htm
|
Pan, G.T., Wang, L.Q., Li, R.S., et al., 2012. Tectonic Evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53: 3-14. https://doi.org/10.1016/j.jseaes.2011.12.018
|
Patriat, P., Achache, J., 1984. India–Eurasia Collision Chronology has Implications for Crustal Shortening and Driving Mechanism of Plates. Nature, 311(5987): 615-621. https://doi.org/10.1038/311615a0
|
Pearce, J.A., Thirlwall, M.F., Ingram, G., et al., 1992. Isotopic Evidence for the Origin of Boninites and Related Rocks Drilled in the Izu-Bonin (Osagawara) Forearc, Leg 125. In: Proceedings of the Ocean Drilling Program, 125 Scientific Results. Ocean Drilling Program. https://doi.org/10.2973/odp.proc.sr.125.134.1992
|
Pearce, J.A., Norry, M.J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1): 33-47. https://doi.org/10.1007/BF00375192
|
Polat, A., Hofmann, A.W., Rosing, M.T., 2002. Boninite-Like Volcanic Rocks in the 3.7-3.8 Ga Isua Greenstone Belt, West Greenland: Geochemical Evidence for Intra-Oceanic Subduction Zone Processes in the Early Earth. Chemical Geology, 184(3/4): 231-254. https://doi.org/10.1016/S0009-2541(01)00363-1
|
Pu, W., Gao., J.F., Zhao, K.D., et al., 2005. Separation Method of Rb-Sr, Sm-Nd Using DCTA and HIBA. Journal of Nanjing University (Natural Sciences), 41(4): 445-450(in Chinese with English abstract). https://www.researchgate.net/publication/284462213_Separation_method_of_Rb-Sr_Sm-Nd_using_DCTA_and_HIBA
|
Replumaz, A., Kárason, H., van der Hilst, R.D., et al., 2004.4-D Evolution of SE Asia's Mantle from Geological Reconstructions and Seismic Tomography. Earth and Planetary Science Letters, 221(1-4): 103-115. https://doi.org/10.1016/S0012-821X(04)00070-6
|
Richards, A., Argles, T., Harris, N., et al., 2005. Himalayan Architecture Constrained by Isotopic Tracers from Clastic Sediments. Earth and Planetary Science Letters, 236(3/4): 773-796. https://doi.org/10.1016/j.epsl.2005.05.034
|
Robinson, J.A.C., Wood, B.J., 1998. The Depth of the Spinel to Garnet Transition at the Peridotite Solidus. Earth and Planetary Science Letters, 164(1/2): 277-284. https://doi.org/10.1016/S0012-821X(98)00213-1
|
Rogers, R.D., Kárason, H., van der Hilst, R.D., 2002. Epeirogenic Uplift above a Detached Slab in Northern Central America. Geology, 30(11): 1031. https://doi.org/10.1130/0091-7613(2002)0301031: euaads>2.0.co;2 doi: 10.1130/0091-7613(2002)030<1031:EUAADS>2.0.CO;2
|
Ruan, B., Luo, B.J., Zhang, H.F., et al., 2019. Magma Mixing of the Eocene Quxu Batholith from the Gangdese Magmatic Belt, South Tibet: Evidence from Cathodoluminescence Characteristics and Composition Changes of Plagioclase. Earth Science, 44(6): 1834-1848. https://doi.org/10.3799/dqkx.2018.397
|
Rudnick, R.L., Gao, S., 2014. Composition of the Continental Crust. In: Rudnick, R.L., ed., Treatise on Geochemistry. Elsevier, Amsterdam.
|
Schildgen, T.F., Yıldırım, C., Cosentino, D., et al., 2014. Linking Slab Break-off, Hellenic Trench Retreat, and Uplift of the Central and Eastern Anatolian Plateaus. Earth-Science Reviews, 128: 147-168. https://doi.org/10.1016/j.earscirev.2013.11.006
|
Sevin, B., Cluzel, D., Maurizot, P., et al., 2014. A Drastic Lower Miocene Regolith Evolution Triggered by Post Obduction Slab Break-off and Uplift in New Caledonia. Tectonics, 33(9): 1787-1801. https://doi.org/10.1002/2014tc003588 doi: 10.1002/2014TC003588
|
Sláma, J., Košler, J., Condon, D.J., et al., 2008. Plešovice Zircon—A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chemical Geology, 249(1/2): 1-35. https://doi.org/10.1016/j.chemgeo.2007.11.005
|
Smit, M.A., Hacker, B.R., Lee, J., 2014. Tibetan Garnet Records Early Eocene Initiation of Thickening in the Himalaya. Geology, 42(7): 591-594. https://doi.org/10.1130/g35524.1 doi: 10.1130/G35524.1
|
Song, Y., Zeng, Q.G., Liu, H.Y., et al., 2019. An Innovative Perspective for the Evolution of Bangong-Nujiang Ocean: Also Discussing the Paleo- and Neo-Tethys Conversion. Acta Petrologica Sinica, 35(3): 625-641. https://doi.org/10.18654/1000-0569/2019.03.02
|
van der Voo, R., Spakman, W., Bijwaard, H., 1999. Tethyan Subducted Slabs under India. Earth and Planetary Science Letters, 171(1): 7-20. https://doi.org/10.1016/S0012-821X(99)00131-4
|
van Hinsbergen, D.J.J., Lippert, P.C., Dupont-Nivet, G., et al., 2012. Greater India Basin Hypothesis and a Two-Stage Cenozoic Collision between India and Asia. PNAS, 109(20): 7659-7664. https://doi.org/10.1073/pnas.1117262109
|
van Hunen, J., Allen, M.B., 2011. Continental Collision and Slab Break-off: A Comparison of 3-D Numerical Models with Observations. Earth and Planetary Science Letters, 302(1/2): 27-37. https://doi.org/10.1016/j.epsl.2010.11.035
|
Wang, R., Richards, J.P., Hou, Z.Q., et al., 2015. Zircon U-Pb Age and Sr-Nd-Hf-O Isotope Geochemistry of the Paleocene-Eocene Igneous Rocks in Western Gangdese: Evidence for the Timing of Neo-Tethyan Slab Breakoff. Lithos, 224/225: 179-194. https://doi.org/10.1016/j.lithos.2015.03.003
|
Wang, X.H., Lang, X.H., Deng, Y.L., et al., 2018. Zircon U-Pb Geochronology, Geochemistry and Tectonic Implications of the Tangbai Porphyritic Granite Pluton in Southern Margin of Gangdese, Tibet. Geological Journal of China Universities, 24(1): 41-55(in Chinese with English abstract).
|
Wang, X.H., Lang, X.H., Deng, Y.L., et al., 2019. Eocene Diabase Dikes in the Tangbai Area, Southern Margin of Lhasa Terrane, Tibet: Evidence for the Slab Break-off of the Neo-Tethys Ocean. Geology in China, 46(6): 1336-1355(in Chinese with English abstract).
|
Wang, X.H., Lang, X.H., Tang, J.X., et al., 2019. Early-Middle Jurassic (182-170 Ma) Ruocuo Adakitic Porphyries, Southern Margin of the Lhasa Terrane, Tibet: Implications for Geodynamic Setting and Porphyry Cu-Au Mineralization. Journal of Asian Earth Sciences, 173: 336-351. https://doi.org/10.1016/j.jseaes.2019.01.042
|
Wang, X.H., Lang, X.H., Tang, J.X., et al., 2020. Early Carboniferous Back-Arc Rifting-Related Magmatism in Southern Tibet: Implications for the History of the Lhasa Terrane Separation from Gondwana. Tectonics, 39(10): e2020TC006237. https://doi.org/10.1029/2020tc006237
|
Weaver, B., Kar, A., Davidson, J., et al., 1996. Geochemical Characteristics of Volcanic Rocks from Ascension Island, South Atlantic Ocean. Geothermics, 25(4-5): 449-470. https://doi.org/10.1016/0375-6505(96)00014-4
|
Weis, D., Wasserburg, G.J., 1987. Rb-Sr and Sm-Nd Systematics of Cherts and Other Siliceous Deposits. Geochimica et Cosmochimica Acta, 51(4): 959-972. https://doi.org/10.1016/0016-7037(87)90108-6
|
Wen, D.R., Liu, D.Y., Chung, S.L., et al., 2008. Zircon SHRIMP U-Pb Ages of the Gangdese Batholith and Implications for Neotethyan Subduction in Southern Tibet. Chemical Geology, 252(3/4): 191-201. https://doi.org/10.1016/j.chemgeo.2008.03.003
|
Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostandards and Geoanalytical Research, 19(1): 1-23. https://doi.org/10.1111/j.1751-908x.1995.tb00147.x doi: 10.1111/j.1751-908X.1995.tb00147.x
|
Winchester, J.A., Floyd, P.A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. https://doi.org/10.1016/0009-2541(77)90057-2
|
Wood, D.A., Joron, J.L., Treuil, M., 1979. A Re-Appraisal of the Use of Trace Elements to Classify and Discriminate between Magma Series Erupted in Different Tectonic Settings. Earth and Planetary Science Letters, 45(2): 326-336. https://doi.org/10.1016/0012-821X(79)90133-X
|
Xu, R.H., Schärer, U., Allègre, C.J., 1985. Magmatism and Metamorphism in the Lhasa Block (Tibet): A Geochronological Study. The Journal of Geology, 93(1): 41-57. https://doi.org/10.1086/628918
|
Xu, Y.G., Lan, J.B., Yang, Q.J., et al., 2008. Eocene Break-off of the Neo-Tethyan Slab as Inferred from Intraplate-Type Mafic Dykes in the Gaoligong Orogenic Belt, Eastern Tibet. Chemical Geology, 255(3/4): 439-453. https://doi.org/10.1016/j.chemgeo.2008.07.016
|
Xu, Y.G., Ma, J.L., Frey, F.A., et al., 2005. Role of Lithosphere-Asthenosphere Interaction in the Genesis of Quaternary Alkali and Tholeiitic Basalts from Datong, Western North China Craton. Chemical Geology, 224(4): 247-271. https://doi.org/10.1016/j.chemgeo.2005.08.004
|
Yakovlev, P.V., Clark, M.K., 2014. Conservation and Redistribution of Crust during the Indo-Asian Collision. Tectonics, 33(6): 1016-1027. https://doi.org/10.1002/2013tc003469 doi: 10.1002/2013TC003469
|
Yang, Z.M., Lu, Y.J., Hou, Z.Q., et al., 2015. High-Mg Diorite from Qulong in Southern Tibet: Implications for the Genesis of Adakite-Like Intrusions and Associated Porphyry Cu Deposits in Collisional Orogens. Journal of Petrology, 56(2): 227-254. https://doi.org/10.1093/petrology/egu076
|
Yin, A., Harrison, T.M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211-280. https://doi.org/10.1146/annurev.earth.28.1.211
|
Yue, Y.H., Ding, L., 2006. 40Ar/39Ar Geochronology, Geochemical Characteristics and Genesis of the Linzhou Basic Dikes, Tibet. Acta Petrologica Sinica, 22(4): 855-866(in Chinese with English abstract). doi: 10.1029/2012JB009373
|
Zhang, L.X., Wang, Q., Zhu, D.C., et al., 2013. Mapping the Lhasa Terrane through Zircon Hf Isotopes: Constraints on the Nature of the Crust and Metallogenic Potential. Acta Petrologica Sinica, 29(11): 3681-3688(in Chinese with English abstract). https://www.researchgate.net/publication/287889673_Mapping_the_Lhasa_Terrane_through_zircon_Hf_isotopes_Constraints_on_the_nature_of_the_crust_and_metallogenic_potential
|
Zhang, Q.H., Willems, H., Ding, L., et al., 2012. Initial India-Asia Continental Collision and Foreland Basin Evolution in the Tethyan Himalaya of Tibet: Evidence from Stratigraphy and Paleontology. The Journal of Geology, 120(2): 175-189. https://doi.org/10.1086/663876
|
Zhao, J.H., Zhou, M.F., 2007. Geochemistry of Neoproterozoic Mafic Intrusions in the Panzhihua District (Sichuan Province, SW China): Implications for Subduction-Related Metasomatism in the Upper Mantle. Precambrian Research, 152(1/2): 27-47. https://doi.org/10.1016/j.precamres.2006.09.002
|
Zhao, Z.D., Mo, X.X., Dilek, Y., et al., 2009. Geochemical and Sr-Nd-Pb-O Isotopic Compositions of the Post-Collisional Ultrapotassic Magmatism in SW Tibet: Petrogenesis and Implications for India Intra-Continental Subduction beneath Southern Tibet. Lithos, 113(1-2): 190-212. https://doi.org/10.1016/j.lithos.2009.02.004
|
Zhao, Z.D., Mo, X.X., Nomade, S., et al., 2006. Post-Collisional Ultrapotassic Rocks in Lhasa Block, Tibetan Plateau: Spatial and Temporal Distribution and Its Implications. Acta Petrologica Sinica, 22(4): 787-794(in Chinese with English abstract).
|
Zhu, D.C., Mo, X.X., Zhao, Z.D., et al., 2010. Presence of Permian Extension- and Arc-Type Magmatism in Southern Tibet: Paleogeographic Implications. Geological Society of America Bulletin, 122(7/8): 979-993. https://doi.org/10.1130/b30062.1
|
Zhu, D.C., Pan, G.T., Mo, X.X., et al., 2006. Late Jurassic-Early Cretaceous Geodynamic Setting in Middle-Northern Gangdese: New Insights from Volcanic Rocks. Acta Petrologica Sinica, 22(3): 534-546(in Chinese with English abstract). https://www.researchgate.net/publication/279618203_Late_Jurassic-Early_Cretaceous_geodynamic_setting_in_middle-northern_Gangdese_New_insights_from_volcanic_rocks
|
Zhu, D.C., Pan, G.T., Wang, L.Q., et al., 2008. Tempo-Spatial Variations of Mesozoic Magmatic Rocks in the Gangdise Belt, Tibet, China, with a Discussion of Geodynamic Setting-Related Issues. Geological Bulletin of China, 27(9): 1535-1550(in Chinese with English abstract).
|
Zhu, D.C., Wang, Q., Chung, S.L., et al., 2019. Gangdese Magmatism in Southern Tibet and India-Asia Convergence since 120 Ma. Geological Society, London, Special Publications, 483(1): 583-604. https://doi.org/10.1144/sp483.14 doi: 10.1144/SP483.14
|
Zhu, D.C., Wang, Q., Zhao, Z.D., et al., 2015. Magmatic Record of India-Asia Collision. Scientific Reports, 5: 14289. https://doi.org/10.1038/srep14289
|
Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2011. The Lhasa Terrane: Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1-2): 241-255. https://doi.org/10.1016/j.epsl.2010.11.005
|
Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2012. Cambrian Bimodal Volcanism in the Lhasa Terrane, Southern Tibet: Record of an Early Paleozoic Andean-Type Magmatic Arc in the Australian Proto-Tethyan Margin. Chemical Geology, 328: 290-308. https://doi.org/10.1016/j.chemgeo.2011.12.024
|
Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429-1454. https://doi.org/10.1016/j.gr.2012.02.002
|
Zhuang, G.S., Najman, Y., Guillot, S., et al., 2015. Constraints on the Collision and the Pre-Collision Tectonic Configuration between India and Asia from Detrital Geochronology, Thermochronology, and Geochemistry Studies in the Lower Indus Basin, Pakistan. Earth and Planetary Science Letters, 432: 363-373. https://doi.org/10.1016/j.epsl.2015.10.026
|
董国臣, 莫宣学, 赵志丹, 等, 2008. 西藏冈底斯南带辉长岩及其所反映的壳幔作用信息. 岩石学报, 24(2): 203-210. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200802004.htm
|
贾黎黎, 王青, 朱弟成, 等, 2013. 重新认识西藏林周盆地基性岩石的地球动力学含义. 岩石学报, 29(11): 3671-3680. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201311002.htm
|
莫宣学, 董国臣, 赵志丹, 等, 2005. 西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息. 高校地质学报, 11(3): 281-290. doi: 10.3969/j.issn.1006-7493.2005.03.001
|
莫宣学, 赵志丹, 邓晋福, 等, 2003. 印度-亚洲大陆主碰撞过程的火山作用响应. 地学前缘, 10(3): 135-148. doi: 10.3321/j.issn:1005-2321.2003.03.013
|
潘桂棠, 莫宣学, 侯增谦, 等, 2006. 冈底斯造山带的时空结构及演化. 岩石学报, 22(3): 521-533. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603001.htm
|
濮巍, 高剑峰, 赵葵东, 等, 2005. 利用DCTA和HIBA快速有效分离Rb-Sr、Sm-Nd的方法. 南京大学学报(自然科学版), 41(4): 445-450. doi: 10.3321/j.issn:0469-5097.2005.04.017
|
阮冰, 骆必继, 张宏飞, 等, 2019. 西藏冈底斯带始新世曲水岩基的岩浆混合作用: 来自斜长石阴极发光特征和成分变化的证据. 地球科学, 44(6): 1834-1848. doi: 10.3799/dqkx.2018.397
|
王旭辉, 郎兴海, 邓煜霖, 等, 2018. 西藏冈底斯南缘汤白斑状花岗岩锆石U-Pb年代学、地球化学及地质意义. 高校地质学报, 24(1): 41-55. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201801004.htm
|
王旭辉, 郎兴海, 邓煜霖, 等, 2019. 西藏拉萨地体南缘汤白地区始新世辉绿岩脉: 新特提斯洋壳断离的证据. 中国地质, 46(6): 1336-1355. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201906008.htm
|
岳雅慧, 丁林, 2006. 西藏林周基性岩脉的40Ar/39Ar年代学、地球化学及其成因. 岩石学报, 22(4): 855-866. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200604009.htm
|
张立雪, 王青, 朱弟成, 等, 2013. 拉萨地体锆石Hf同位素填图: 对地壳性质和成矿潜力的约束. 岩石学报, 29(11): 3681-3688. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201311003.htm
|
赵志丹, 莫宣学, Nomade, S., 等, 2006. 青藏高原拉萨地块碰撞后超钾质岩石的时空分布及其意义. 岩石学报, 22(4): 787-794. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200604003.htm
|
朱弟成, 潘桂棠, 莫宣学, 等, 2006. 冈底斯中北部晚侏罗世-早白垩世地球动力学环境: 火山岩约束. 岩石学报, 22(3): 534-546. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603002.htm
|
朱弟成, 潘桂棠, 王立全, 等, 2008. 西藏冈底斯带中生代岩浆岩的时空分布和相关问题的讨论. 地质通报, 27(9): 1535-1550. doi: 10.3969/j.issn.1671-2552.2008.09.013
|