• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 4
    Apr.  2022
    Turn off MathJax
    Article Contents
    Lei Tianting, Wang Zaicong, Li Yan, 2022. Copper Isotopic Variation of Turquoise in Low-Temperature Growth Process and Its Significance for Origin Traceability. Earth Science, 47(4): 1371-1382. doi: 10.3799/dqkx.2021.138
    Citation: Lei Tianting, Wang Zaicong, Li Yan, 2022. Copper Isotopic Variation of Turquoise in Low-Temperature Growth Process and Its Significance for Origin Traceability. Earth Science, 47(4): 1371-1382. doi: 10.3799/dqkx.2021.138

    Copper Isotopic Variation of Turquoise in Low-Temperature Growth Process and Its Significance for Origin Traceability

    doi: 10.3799/dqkx.2021.138
    • Received Date: 2021-05-26
      Available Online: 2022-04-29
    • Publish Date: 2022-04-25
    • Turquoise (CuAl6(PO4)4(OH)8·4(H2O)) is an important supergene gemstone mineral. The isotope of Cu, its major component, has been increasingly used to trace the origin of such gemstone. However, the tracing mechanism is not clear. Besides, it is still unclear whether Cu isotope composition changes significantly or not during the complex growth of turquoise, limiting the reliable application of trace ability via Cu isotope. In this work it used MC-ICP-MS instrument to measure the Cu isotopic compositions of banded turquoise, which were obtained from Zhushan County, the largest gem-grade deposit of turquoise in the world.The results show that the values of Cu isotopes are very high, however, they are remarkably identical in different bands of the turquoise sample (δ65Cu=10.99‰-11.54‰).The Cu isotope fractionation, in the precipitation of ore-bearing hydrothermal solution, thus has been limited (< 1‰). Instead, the significant fractionation of Cu isotope would occur mainly during the formation of ore-bearing hydrothermal solution. The Cu isotope composition of primary Cu sulfides lies usually within the range of 0±1‰, significantly lower than the value measured in this study, suggesting that the oxidation of the primary sulfide in the source area is the major factor for the significant fractionation of Cu isotope in the ore-bearing hydrothermal solution. The results are consistent with the data of typical turquoise deposits in the world, which confirms that the Cu isotopic composition of turquoise is mainly controlled by the source environment.Even though the turquoise has experienced periodic growth and produced banded structure, the Cu isotope of turquoises formed in the same mine hardly change. This work has explored the mechanism of tracing the origin of turquoise deposits via Cu isotope, and better understanded Cu isotope fractionation in low-temperature hydrothermal process.

       

    • loading
    • Chávez, W.X., 2000. Supergene Oxidation of Copper Deposits: Zoning and Distribution of Copper Oxide Minerals. SEG Discovery, (41): 1-21. https://doi.org/10.5382/segnews.2000-41.fea
      Chen, D.D., Song, S.M., Ryan, M., et al., 2016. Copper Isotopic Characteristics of the Water System in the Dexing Copper Deposit, Jiangxi Province, and Their Geological Significance. Geological Bulletin of China, 35(1): 188-195(in Chinese with English abstract).
      Chen, Q.L., Yuan, X.Q., Chen, J.Z., et al., 2010. Structural Characteristics of Turquoise Filled with Aluminum Phosphate Adhesive. Earth Science, 35(6): 1023-1028(in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201006013.htm
      Ehrlich, S., Butler, I., Halicz, L., et al., 2004. Experimental Study of the Copper Isotope Fractionation between Aqueous Cu(Ⅱ) and Covellite, CuS. Chemical Geology, 209(3/4): 259-269. https://doi.org/10.1016/j.chemgeo.2004.06.010
      Evans, M.J., Fayek, M., Riciputi, L., et al., 2004. LA-MC-ICPMS Determination of Copper Isotope Ratios in Turquoise from the Southwestern United States. In: EOS, Transactions, American Geophysical Union. American Geophysical Union, Fall Meeting, abstract, V51A-0514.
      Foord, E.E., Taggart, J.E. Jr, 1998. A Reexamination of the Turquoise Group: The Mineral Aheylite, Planerite (Redefined), Turquoise and Coeruleolactite. Mineralogical Magazine, 62(1): 93-111. https://doi.org/10.1180/002646198547495
      Fu, B.G., Hou, Q.Y., 2017. Mineralogical Characteristics and Metallogenic Geological Conditions of Turquoise. Huabei Land and Resources, (5): 33-34(in Chinese with English abstract).
      Fujii, T., Moynier, F., Abe, M., et al., 2013. Copper Isotope Fractionation between Aqueous Compounds Relevant to Low Temperature Geochemistry and Biology. Geochimica et Cosmochimica Acta, 110: 29-44. https://doi.org/10.1016/j.gca.2013.02.007
      Fujii, T., Moynier, F., Blichert-Toft, J., et al., 2014. Density Functional Theory Estimation of Isotope Fractionation of Fe, Ni, Cu, and Zn among Species Relevant to Geochemical and Biological Environments. Geochimica et Cosmochimica Acta, 140: 553-576. https://doi.org/10.1016/j.gca.2014.05.051
      Greenwood, N.N., Whitfield, H.J., 1968. Mössbauer Effect Studies on Cubanite (CuFe2S3) and Related Iron Sulphides. J. Chem. Soc. A, 1697-1699. https://doi.org/10.1039/j19680001697
      Hu, W.F., Zhang, Y.K., Liu, J.H., et al., 2019. The Isotopic Compositions of Copper and Molybdenum from Porphyry Cu-Mo Deposit in the Gangdese, Tibet, and Their Significance. Earth Science, 44(6): 1923-1934(in Chinese with English abstract). https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=201902294463229551
      Hull, S., Fayek, M., Mathien, F.J., et al., 2008. A New Approach to Determining the Geological Provenance of Turquoise Artifacts Using Hydrogen and Copper Stable Isotopes. Journal of Archaeological Science, 35(5): 1355-1369. https://doi.org/10.1016/j.jas.2007.10.001
      Hull, S., Fayek, M., Mathien, F.J., et al., 2014. Turquoise Trade of the Ancestral Puebloan: Chaco and Beyond. Journal of Archaeological Science, 45: 187-195. https://doi.org/10.1016/j.jas.2014.02.016
      Ji, J., Zhao, H.X., 2017. Mechanism and Factors Influencing Copper Isotopic Fractionation: A Review. Advances in Geosciences, 7(3): 336-348 (in Chinese with English abstract). doi: 10.12677/AG.2017.73037
      Jiang, Z.C., Chen, D.M., Wang, F.Y., et al., 1983. Thermal Properties of Turquoise and Its Intergrowing Minerals in a Certain District of China. Acta Mineralogica Sinica, 3(3): 198-206, 247(in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB198303006.htm
      Kim, J., Simon, A.W., Ripoche, V., et al., 2003. Proton-Induced X-Ray Emission Analysis of Turquoise Artefacts from Salado Platform Mound Sites in the Tonto Basin of Central Arizona. Measurement Science and Technology, 14(9): 1579-1589. https://doi.org/10.1088/0957-0233/14/9/309
      Ku, Y.L., Yang, M.X., 2021. Study on Spectral Characteristics of Turquoise with Blue"Water Ripple" from Shiyan, Hubei Province. Spectroscopy and Spectral Analysis, 41(2): 636-642(in Chinese with English abstract).
      Ku, Y.L., Yang, M.X., Li, Y., 2020. Spectroscopic Study of Green-Yellow and Green Turquoise Associated Minerals from Zhushan, Hubei Province. Spectroscopy and Spectral Analysis, 40(6): 1815-1820(in Chinese with English abstract). https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=202002280973030150
      Larson, P.B., Maher, K., Ramos, F.C., et al., 2003. Copper Isotope Ratios in Magmatic and Hydrothermal Ore-Forming Environments. Chemical Geology, 201(3-4): 337-350. https://doi.org/10.1016/j.chemgeo.2003.08.006
      Li, J.Z., 1994. Jade and Resource Development. Mineral Resources and Geology, 8(3): 213-217(in Chinese with English abstract). doi: 10.1007/0-387-26350-0_5
      Li, Y.X., Xian, Y.H., 2015. Provenance Studies of Ancient Turquoise in America. Sciences of Conservation and Archaeology, 27(2): 102-109(in Chinese with English abstract). https://pubs.geoscienceworld.org/gsa/gsabulletin/article-abstract/127/11-12/1617/126096/Isotopic-evidence-for-the-provenance-of-turquoise
      Lin, C.Q., Hu, M., He, H.T., 2006. Ore-Control Condition and Ore-Searching Direction of Ag-Au Polymetal Deposits in Wudang Area, Hubei Province. Contributions to Geology and Mineral Resources Research, 21(2): 104-108(in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTOTAL-DZZK200602007.htm
      Liu, S.G., Li, D.D., Li, S.G., et al., 2014. High-Precision Copper and Iron Isotope Analysis of Igneous Rock Standards by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 29(1): 122-133. https://doi.org/10.1039/C3JA50232E
      Maher, K.C., Jackson, S., Mountain, B., 2011. Experimental Evaluation of the Fluid-Mineral Fractionation of Cu Isotopes at 250 ℃ and 300 ℃. Chemical Geology, 286(3-4): 229-239. https://doi.org/10.1016/j.chemgeo.2011.05.008
      Maréchal, C.N., Télouk, P., Albarède, F., 1999. Precise Analysis of Copper and Zinc Isotopic Compositions by Plasma-Source Mass Spectrometry. Chemical Geology, 156(1-4): 251-273. https://doi.org/10.1016/S0009-2541(98)00191-0
      Mathur, R., Titley, S., Barra, F., et al., 2009. Exploration Potential of Cu Isotope Fractionation in Porphyry Copper Deposits. Journal of Geochemical Exploration, 102(1): 1-6. https://doi.org/10.1016/j.gexplo.2008.09.004
      Othmane, G., Hull, S., Fayek, M., et al., 2015. Hydrogen and Copper Isotope Analysis of Turquoise by SIMS: Calibration and Matrix Effects. Chemical Geology, 395: 41-49. https://doi.org/10.1016/j.chemgeo.2014.11.024
      Paige, S., 1912. The Origin of Turquoise in the Burro Mountains, New Mexico. Economic Geology, 7(4): 382-392. https://doi.org/10.2113/gsecongeo.7.4.382
      Shi, Z.R., Cai, K.Q., 2011. A Study of the Origin of Turquoise Deposite in Zhushan County, Hubei Province. Acta Petrologica et Mineralogica, 30(S1): 187-194 (in Chinese with English abstract).
      Thibodeau, A.M., López Luján, L., Killick, D.J., et al., 2018. Was Aztec and Mixtec Turquoise Mined in the American Southwest? Science Advances, 4(6): eaas9370. https://doi.org/10.1126/sciadv.aas9370
      Thibodeau, A.M., Killick, D.J., Hedquist, S.L., et al., 2015. Isotopic Evidence for the Provenance of Turquoise in the Southwestern United States. Geological Society of America Bulletin, 127(11/12): 1617-1631. https://doi.org/10.1130/b31135.1
      Tu, H.K., 1996. Geological Characteristics of Turquoise Ore in the Areas Adjacent to Shaanxi and Hubei Provinces. Geology of Shaanxi, 14(2): 59-64(in Chinese with English abstract). https://www.sciencedirect.com/science/article/abs/pii/S1875510016300695
      Venendaal, J.F., 2007. Trace Element Geochemistry and Carbonate Alteration as Indicators for Gold Mineralization at the Cortez Hills Deposit, Lander County, Nevada(Dissertation). Colorado School of Mines, Colorado.
      Wall, A.J., Mathur, R., Post, J.E., et al., 2011. Cu Isotope Fractionation during Bornite Dissolution: An In Situ X-Ray Diffraction Analysis. Ore Geology Reviews, 42(1): 62-70. https://doi.org/10.1016/j.oregeorev.2011.01.001
      Wang, Z.C., Park, J.W., Wang, X., et al., 2019. Evolution of Copper Isotopes in Arc Systems: Insights from Lavas and Molten Sulfur in Niuatahi Volcano, Tonga Rear Arc. Geochimica et Cosmochimica Acta, 250: 18-33. https://doi.org/10.1016/j.gca.2019.01.040
      Weber, R.H., ol Mines, N.M.B., 1979. Turquoise in New Mexico. New Mexico Geology, 1: 39-40.
      Xu, F., 2017. Study on Turquoise in Shiyan City, Hubei Province. Shanghai Art & Crafts, (3): 30-32(in Chinese with English abstract).
      Yue, S.W., Deng, X.H., 2019. Geological and Ore-Forming Characteristics of Ag-Au and Polymetallic Deposits in Northwestern Hubei, China. Earth Science Frontiers, 26(5): 106-128(in Chinese with English abstract).
      Zhu, X.K., Guo, Y., Williams, R.J.P., etal., 2002. Mass Fractionation Processes of Transition Metal Isotopes. Earth and Planetary Science Letters, 200(1/2): 47-62. https://doi.org/10.1016/S0012-821X(02)00615-5
      Zhu, X.K., Wang, Y., Yan, B., et al., 2013. Developments of Non-Traditional Stable Isotope Geochemistry. Bulletin of Mineralogy, Petrology and Geochemistry, 32(6): 651-688(in Chinese with English abstract). https://www.researchgate.net/publication/273766379_Developments_of_Non-Traditional_Stable_Isotope_Geochemistry
      陈丹丹, 宋世明, Mathur Ryan, 等, 2016. 江西德兴铜矿区水系的Cu同位素地球化学特征及其地质意义. 地质通报, 35(1): 188-195. doi: 10.3969/j.issn.1671-2552.2016.01.018
      陈全莉, 袁心强, 陈敬中, 等, 2010. 磷酸铝结合剂改性绿松石的结构特征. 地球科学, 35(6): 1023-1028. doi: 10.3799/dqkx.2010.115
      付宝国, 侯青亚, 2017. 绿松石的矿物学特征及成矿地质条件. 华北国土资源, (5): 33-34. doi: 10.3969/j.issn.1672-7487.2017.05.016
      胡文峰, 张烨恺, 刘金华, 等, 2019. 西藏冈底斯斑岩型铜钼矿床的Cu、Mo同位素组成及其意义. 地球科学, 44(6): 1923-1934. doi: 10.3799/dqkx.2019.077
      嵇静, 赵海香, 2017. 铜同位素分馏机理及影响因素研究综述. 地球科学前沿, 7(3): 336-348. doi: 10.12677/AG.2017.73037
      姜泽春, 陈大梅, 王辅亚, 等, 1983. 湖北、陕西一带绿松石的热性能及其共生矿物. 矿物学报, 3(3): 198-206, 247. doi: 10.3321/j.issn:1000-4734.1983.03.006
      库雅伦, 杨明星, 2021. 湖北十堰蓝色"水波纹"绿松石的谱学特征. 光谱学与光谱分析, 41(2): 636-642. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202102057.htm
      库雅伦, 杨明星, 李妍, 2020. 湖北竹山黄绿色-绿色绿松石伴生矿的谱学研究. 光谱学与光谱分析, 40(6): 1815-1820. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202006032.htm
      李家珍, 1994. 玉石及其资源开发(4). 矿产与地质, 8(3): 213-217. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD403.010.htm
      李延祥, 先怡衡, 2015. 美国古代绿松石示踪研究. 文物保护与考古科学, 27(2): 102-109. doi: 10.3969/j.issn.1005-1538.2015.02.016
      林长谦, 胡明, 何洪涛, 2006. 湖北武当地区银金多金属矿控矿条件及找矿方向. 地质找矿论丛, 21(2): 104-108. doi: 10.3969/j.issn.1001-1412.2006.02.007
      石振荣, 蔡克勤, 2011. 湖北省竹山县绿松石矿床成因研究. 岩石矿物学杂志, 30(S1): 187-194.
      涂怀奎, 1996. 陕鄂相邻地区绿松石矿地质特征. 陕西地质, 14(2): 59-64. https://www.cnki.com.cn/Article/CJFDTOTAL-SXDY199602006.htm
      徐飞, 2017. 湖北十堰绿松石探究. 上海工艺美术, (3): 30-32. https://www.cnki.com.cn/Article/CJFDTOTAL-SGYM201703011.htm
      岳素伟, 邓小华, 2019. 鄂西北地区银金多金属矿床地质特征与成矿规律. 地学前缘, 26(5): 106-128. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201905011.htm
      朱祥坤, 王跃, 闫斌, 等, 2013. 非传统稳定同位素地球化学的创建与发展. 矿物岩石地球化学通报, 32(6): 651-688. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201306002.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(1)

      Article views (1649) PDF downloads(91) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return