• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 8
    Aug.  2023
    Turn off MathJax
    Article Contents
    Liang Dong, Hua Weihua, Zhao Yabo, Liu Zhipeng, Liu Xiuguo, 2023. Error Correction in Geological Model Based on Stratigraphic Interdependency. Earth Science, 48(8): 3179-3192. doi: 10.3799/dqkx.2021.139
    Citation: Liang Dong, Hua Weihua, Zhao Yabo, Liu Zhipeng, Liu Xiuguo, 2023. Error Correction in Geological Model Based on Stratigraphic Interdependency. Earth Science, 48(8): 3179-3192. doi: 10.3799/dqkx.2021.139

    Error Correction in Geological Model Based on Stratigraphic Interdependency

    doi: 10.3799/dqkx.2021.139
    • Received Date: 2021-12-26
    • Publish Date: 2023-08-25
    • In geological exploration, the bottom interface of deep stratum is not sampled in most boreholes, and incorrect sample information limits the accuracy of geological models. In order to improve the accuracy of geological model, we proposes a method to correct geological model based on stratigraphic interdependency. Due to the formation mechanism of the strata, the morphology of the adjacent strata is similar. Based on this character, the Copula function is used to model the dependence structure of adjacent strata, and the joint distribution model of adjacent strata and the likelihood function of the stratum to be corrected are constructed. In the Bayesian framework, the established interface model is taken as the prior model, and the likelihood function is used to update the prior model to obtain the posterior distribution. In the end, the condition expectation of the interface is calculated as the posterior model. The proposed approach is illustrated through a case study of the geological interface model of the coastal zone near Beihai. The results show that the error of the geological interface model is reduced after model correction.

       

    • loading
    • Abrahamsen, P., Omre, H., 1994. Random Functions and Geological Subsurfaces. Ecmor Ⅳ-European Conference on the Mathematics of Oil Recovery, Røros, Norway, 21. https://doi.org/10.3997/2214-4609.201411142
      Autin, J., Scheck-Wenderoth, M., Götze, H. J., et al., 2016. Deep Structure of the Argentine Margin Inferred from 3D Gravity and Temperature Modelling, Colorado Basin. Tectonophysics, 676(47): 198-210. https://doi.org/10.1016/j.tecto.2015.11.023
      Bárdossy, A., 2006. Copula-Based Geostatistical Models for Groundwater Quality Parameters. Water Resources Research, 42(11). https://doi.org/10.1029/2005wr004754
      Bárdossy, A., Li, J., 2008. Geostatistical Interpolation Using Copulas. Water Resources Research, 44(7). https://doi.org/10.1029/2007wr006115
      Calcagno, P., Chiles, J. P., Courrioux, G., at al., 2008. Geological Modelling from Field Data and Geological Knowledge: Part Ⅰ. Modelling Method Coupling 3D Potential-Field Interpolation and Geological Rules. Physics of the Earth and Planetary Interiors, 171 (1-4): 147-157. https://doi.org/10.1016/j.pepi.2008.06.013
      Caumon, G., Journel, A. G., 2004. Early Uncertainty Assessment: Application to A Hydrocarbon Reservoir Appraisal. Geostatistics Banff 2004, Springer, Dordrecht, 551-557. https://doi.org/10.1007/978-1-4020-3610-1_56
      Daly, C., 2006. Guidelines for Assessing the Suitability of Spatial Climate Data Sets. International Journal of Climatology, 26(6): 707-721. https://doi.org/10.1002/joc.1322
      de Kemp, E. A., Sprague, K. B., 2003. Interpretive Tools for 3-D Structural Geological Modeling Part Ⅰ: Bxezier-Based Curves, Ribbons and Grip Frames. Geoinformatica, 7 (1): 55-71. https://doi.org/10.1023/a:1022822227691
      De la Varga, M., Schaaf, A., Wellmann J. F., 2018. GemPy 1.0: Open-Source Stochastic Geological Modeling and Inversion. Geoscientific Model Development Discussions, 1-50. https://doi.org/10.5194/gmd-12-1-2019
      De Paor, D. G., 1996. Bxezier Curves and Geological Design. In: De Paor, D. G., ed., Computer Methods in the Geosciences. Pergamon, 389-417. https://doi.org/10.1016/s1874-561x(96)80031-9
      Fremming, N. P., 2002. 3D Geological Model Construction Using a 3D Grid. ECMOR Ⅷ-8th European Conference on the Mathematics of Oil Recovery. https://doi.org/10.3997/2214-4609.201405917
      Gradmann, S., Ebbing, J., Fullea, J., 2013. Integrated Geophysical Modelling of a Lateral Transition Zone in the Lithospheric Mantle under Norway and Sweden. Geophysical Journal International, 194 (3): 1358-1373. https://doi.org/10.1093/gji/ggt213
      Haase, C., Ebbing, J., Funck, T., 2017. A 3D Regional Crustal Model of the NE Atlantic Based on Seismic and Gravity Data. Geological Society, London, Special Publications, 447 (1): 233-247. https://doi.org/10.1144/sp447.8
      Hou, Z., Wang, T. Y., Yu, C. C., et al., 2018. Study of 3d Geological Modeling Based on Aeromagnetic Data. Advances in Earth Science, 33(3): 257-269 (in Chinese with English abstract).
      Kessler, H., Mathers, S., Sobisch, H. G., 2009. The Capture and Dissemination of Integrated 3D Geospatial Knowledge at the British Geological Survey Using GSI3D Software and Methodology. Computers & Geosciences, 35 (6): 1311-1321. https://doi.org/10.1016/j.cageo.2008.04.005
      Lemon, A. M., Jones, N. L., 2003. Building Solid Models from Boreholes and User-Defined Cross-Sections. Computers & Geosciences, 29(5): 547-555. https://doi.org/10.1016/s0098-3004(03)00051-7
      Liu, Z. F., Wei, Z. H., Huang, X. J., et al., 2012. Research on Dynamic Update Method of 3d Geological Model: A Case Study of Water Resources and Hydropower Projects. China Rural Water and Hydropower, 11: 93-96 (in Chinese with English abstract).
      Lyu, Y. H., Du, Y., Zou, C. Y., 2007. Improved Numerical Simulation Method of Complex Fault Block Oil Reservoir. Fault-Block Oil & Gas Field, 14(6): 21-22, 94 (in Chinese with English abstract).
      Ming, J., Pan, M., Qu, H. G., et al., 2010. GSIS: A 3D Geological Multi-Body Modeling System from Netty Cross-Sections with Topology. Computers & Geosciences, 36(6): 756-767. https://doi.org/10.1016/j.cageo.2009.11.003
      Nelsen, R. B., 2007. An Introduction to Copulas. Springer, New York.
      Perrin, M., Rainaud, J. F., 2013. Shared Earth Modeling: Knowledge Driven Solutions for Building and Managing Subsurface 3D Geological Models, Editions Technip.
      Sadegh, M., Ragno, E., Aghakouchak, A., 2017. Multivariate Copula Analysis Toolbox (MvCAT): Describing Dependence and Underlying Uncertainty Using a Bayesian Framework. Water Resources Research, 53. https://doi.org/10.1002/2016WR020242.
      Sklar, A, 1959. Fonctions de Repartition An Dimensions et Leurs Marges. Publications de l'Insitut de Statistique de Paris, 229-231
      Sprague, K. B., de Kemp, E. A., 2005. Interpretive Tools for 3-D Structural Geological Modelling Part Ⅱ: Surface Design from Sparse Spatial Data. GeoInformatica, 9(1): 5-32. https://doi.org/10.1007/s10707-004-5620-8
      Tacher, L., Pomian-Srzednicki, I., Parriaux, A., 2006. Geological Uncertainties Associated with 3-D Subsurface Models. Computers & Geosciences, 32(2): 212-221. https://doi.org/10.1016/j.cageo.2005.06.010
      Tan, F., Wang, J., Jiao, Y.Y., et al., 2021. Current Situation and Development of Urban Underground Space Suitability Evaluation. Earth Science, 46(5): 1896-1908 (in Chinese with English abstract).
      Tearpock, D. J., Bischke, R. E., 1991. Applied Subsurface Geological Mapping. Prentice Hall.
      Tobler, W. R., 1970. A Computer Movie Simulating Urban Growth in the Detroit Region. Economic Geography, 46: 234. https://doi.org/10.2307/143141
      Wellmann, J. F., de la Varga, M., Murdie, R. E., et al., 2017. Uncertainty Estimation for a Geological Model of the Sandstone Greenstone Belt, Western Australia: Insights from Integrated Geological and Geophysical Inversion in a Bayesian Inference Framework. Geological Society, London, Special Publications, 453(1): 41-56. https://doi.org/10.1144/sp453.12
      Wellmann, J. F., Caumon, G., 2018. 3-D Structural Geological Models: Concepts, Methods, and Uncertainties, Advances in Geophysics, 59: 1-121. https://doi.org/10.1016/bs.agph.2018.09.001
      Winter, J. G., 1968. The Prodromus of Nicolaus Steno's Dissertation Concerning A Solid Body Enclosed by Process of Nature within A Solid, Hafner.
      Wolff, B, S. F., 1981. On Nonparametric Measures of Dependence for Random Variables. Annals of Statistics, 9(4): 879-885. https://doi.org/10.1214/aos/1176345528
      Xie, J. R., Qiao, S. F., Qian, H., et al., 2014. The Application of Virtual Drilling Technology in the Three-Dimensional Geological Modeling of Water Resources and Hydropower. Journal of Railway Science and Engineering, (3): 123-128 (in Chinese with English abstract).
      Xiu, C. H., Che, D. F., Jia, G. B., 2015. A 3D Dynamic Modeling Method for Coal Seams with Complex Geological Structures. Mine Surveying, 6: 52-55 (in Chinese with English abstract).
      Zhang, X.L., Wu, C.L., Zhou, Q., et al., 2020. Multi-Scale 3D Modeling and Visualization of Super Large Manganese Ore Gathering Area in Guizhou China. Earth Science, 45(2): 634-644 (in Chinese with English abstract).
      Zhu, L. F., Wu, X. C., Pan, X., 2006. Mechan6ism and Implementation of Error Correction for 3D Strata Model. Rock and Soil Mechanics, 27(2): 268-271 (in Chinese with English abstract).
      Zhu, L. F., Wu, X. C., Pan, X., 2009. Theory of Accuracy Assessment and Methods for Error Correction in 3D Geological Structure Models. Earth Science Frontiers, 16(4): 363-371 (in Chinese with English abstract).
      Zhu, L. F., Zhang, C. J., Li, M. J., et al., 2012. Building 3D Solid Models of Sedimentary Stratigraphic Systems from Borehole Data: An Automatic Method and Case Studies. Engineering Geology, 127(8): 1-13. https://doi.org/10.1016/j.enggeo.2011.12.001
      侯征, 王天意, 于长春, 等, 2018. 基于航磁数据的三维地质建模研究. 地球科学进展, 33(3): 257-269. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201803007.htm
      刘志锋, 魏振华, 黄笑鹃, 等, 2012. 三维地质模型动态更新方法研究——以水利水电工程为例. 中国农村水利水电, 11: 93-96. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD201211027.htm
      吕迎红, 杜燕, 邹存友, 等, 2007. 复杂断块油藏地质模型修正技术探讨. 断块油气田, 14(6): 21-22, 94. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT200706006.htm
      谭飞, 汪君, 焦玉勇, 等, 2021. 城市地下空间适宜性评价研究国内外现状及趋势. 地球科学, 46(5): 1896-1908. doi: 10.3799/dqkx.2020.155
      谢济仁, 乔世范, 钱骅, 等, 2014. 虚拟钻孔技术在水利水电三维地质建模中的应用. 铁道科学与工程学报, 3: 123-128. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201403022.htm
      修春华, 车德福, 贾国兵, 2015. 含复杂地质构造的三维煤层动态建模方法. 矿山测量, 6: 52-55. https://www.cnki.com.cn/Article/CJFDTOTAL-KSCL201506016.htm
      张夏林, 吴冲龙, 周琦, 等, 2020. 贵州超大型锰矿集区的多尺度三维地质建模. 地球科学, 45(2): 634-644. doi: 10.3799/dqkx.2018.384
      朱良峰, 吴信才, 潘信, 2006. 三维地层模型误差修正机制及其实现技术. 岩土力学, 27(2): 268-271. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200602020.htm
      朱良峰, 吴信才, 潘信, 2009. 三维地质结构模型精度评估理论与误差修正方法研究. 地学前缘, 16(4): 363-371. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200904042.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)  / Tables(3)

      Article views (689) PDF downloads(54) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return