• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 9
    Sep.  2023
    Turn off MathJax
    Article Contents
    Kuang Jian, Qi Shihua, Jiang Shu, Yao Hong, 2023. Thinkings and Prospects for the Research on Geothermics in the Big Data Era. Earth Science, 48(9): 3504-3517. doi: 10.3799/dqkx.2021.144
    Citation: Kuang Jian, Qi Shihua, Jiang Shu, Yao Hong, 2023. Thinkings and Prospects for the Research on Geothermics in the Big Data Era. Earth Science, 48(9): 3504-3517. doi: 10.3799/dqkx.2021.144

    Thinkings and Prospects for the Research on Geothermics in the Big Data Era

    doi: 10.3799/dqkx.2021.144
    • Received Date: 2021-07-12
      Available Online: 2023-10-07
    • Publish Date: 2023-09-25
    • The era of big data drives the revolution of industry, thoughts, and science. The integration, induction, and scientific discovery of data bring opportunities and challenges to the development of geothermics. As a multi-disciplinary or interdisciplinary subject, geothermics involves all aspects of earth science, which poses challenges to the extremely complex and difficult development of geothermics in the era of big data. In this study, we divide geothermics into contemporary geothermics and historical geothermics based on time. First, we analyze the geothermal structure and related energy/disasters from three aspects of heat flow distribution in China and the world, hydrochemical parameters, and geothermal potential evaluation system. Second, we discuss the temporal and spatial changes of heat, the tectonic evolution, and the effect of climate, environment, and energy from three aspects of temporal and spatial variation, evolution, and resource formation of heat in historical geothermics. All these efforts aim to expound the foresight and feasibility of big data introduction, respectively. In the future, the development of geothermics should focus on the construction of the framework and elements of geothermics, the interpretation of related scientific links, and discovery. Meanwhile, it should focus on the construction of the knowledge graph of geothermics, the integration, interpretation, and discovery of multi-disciplinary knowledge, and the reconstruction of the deep-time geothermal state and physical and the chemical processes reflected.

       

    • loading
    • Barbier, E., 2002. Geothermal Energy Technology and Current Status: An Overview. Renewable and Sustainable Energy Reviews, 6(1-2): 3-65. https://doi.org/10.1016/S1364-0321(02)00002-3
      Birch, F., 1954. The Present State of Geothermal Investigations. SEPM Journal of Sedimentary Research, 19(4): 645-659. https://doi.org/10.1306/d42696c5-2b26-11d7-8648000102c1865d
      Bird, P., 2003. An Updated Digital Model of Plate Boundaries. Geochemistry, Geophysics, Geosystems, 4(3): 1027-1029. https://doi.org/10.1029/2001GC000252
      Brown, M., Johnson, T., 2019. Metamorphism and the Evolution of Subduction on Earth. American Mineralogist, 104(8): 1065-1082. https://doi.org/10.2138/am-2019-6956
      Cawood, P. A., 2020. Earth Matters: A Tempo to our Planet's Evolution. Geology, 48(5): 525-526. https://doi.org/10.1130/focus052020.1
      Chen, M. X., 1992. A New Map of Hot Springs in China and Its Explanation. Chinese Journal of Geology, 27(S1): 322-332 (in Chinese with English abstract).
      Chen, M. X., Wang, J. Y., 1994. Review and Prospect on Geothermal Studies in China. Chinese Journal of Geophysics, 37(S1): 320-338 (in Chinese with English abstract).
      Chen, M. X., Wang, J. Y., Deng, X., 1995. Advance in Geothermics in China. Earth Science, 20(4): 367-372 (in Chinese with English abstract).
      Delmelle, P., Bernard, A., Kusakabe, M., et al., 2000. Geochemistry of the Magmatic-Hydrothermal System of Kawah Ijen Volcano, East Java, Indonesia. Journal of Volcanology and Geothermal Research, 97(1-4): 31-53. https://doi.org/10.1016/S0377-0273(99)00158-4
      Deng, Y. M., Nordstrom, D. K., Blaine McCleskey, R., 2011. Fluoride Geochemistry of Thermal Waters in Yellowstone National Park: Ⅰ. Aqueous Fluoride Speciation. Geochimica et Cosmochimica Acta, 75(16): 4476-4489. https://doi.org/10.1016/j.gca.2011.05.028
      Furlong, K. P., Chapman, D. S., 2013. Heat Flow, Heat Generation, and the Thermal State of the Lithosphere. Annual Review of Earth and Planetary Sciences, 41: 385-410. https://doi.org/10.1146/annurev.earth.031208.100051
      Ganino, C., Arndt, N. T., 2009. Climate Changes Caused by Degassing of Sediments during the Emplacement of Large Igneous Provinces. Geology, 37(4): 323-326. https://doi.org/10.1130/g25325a.1
      Gherardi, F., Panichi, C., Yock, A., et al., 2002. Geochemistry of the Surface and Deep Fluids of the Miravalles Volcano Geothermal System (Costa Rica). Geothermics, 31(1): 91-128. https://doi.org/10.1016/S0375-6505(01)00030-X
      Giggenbach, W., Sheppard, D., Robinson, B., et al., 1994. Geochemical Structure and Position of the Waiotapu Geothermal Field, New Zealand. Geothermics, 23(5-6): 599-644. https://doi.org/10.1016/0375-6505(94)90022-1
      Giggenbach, W. F., Soto, R. C., 1992. Isotopic and Chemical Composition of Water and Steam Discharges from Volcanic-Magmatic-Hydrothermal Systems of the Guanacaste Geothermal Province, Costa Rica. Applied Geochemistry, 7(4): 309-332. https://doi.org/10.1016/0883-2927(92)90022-U
      Gizaw, B., 1996. The Origin of High Bicarbonate and Fluoride Concentrations in Waters of the Main Ethiopian Rift Valley, East African Rift System. Journal of African Earth Sciences, 22(4): 391-402. https://doi.org/10.1016/0899-5362(96)00029-2
      Glover, R. B., Mroczek, E. K., 2009. Chemical Changes in Natural Features and Well Discharges in Response to Production at Wairakei, New Zealand. Geothermics, 38(1): 117-133. https://doi.org/10.1016/j.geothermics.2008.12.008
      Gunawardana, P. M., Morra, G., Chowdhury, P., et al., 2020. Calibrating the Yield Strength of Archean Lithosphere Based on the Volume of Tonalite-Trondhjemite-Granodiorite Crust. Frontiers in Earth Science, 8: 548724. https://doi.org/10.3389/feart.2020.548724
      Guo, Q. H., Wang, Y. X., Liu, W., 2008. B, As, and F Contamination of River Water Due to Wastewater Discharge of the Yangbajing Geothermal Power Plant, Tibet, China. Environmental Geology, 56(1): 197-205. https://doi.org/10.1007/s00254-007-1155-2
      Herzberg, C., Condie, K., Korenaga, J., 2010. Thermal History of the Earth and Its Petrological Expression. Earth and Planetary Science Letters, 292(1-2): 79-88. https://doi.org/10.1016/j.epsl.2010.01.022
      Hey, T., Tansley, S., Tolle, K., 2009. The Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft Research, Redmond.
      van Hinsbergen, D. J. J., Steinberger, B., Guilmette, C., et al., 2021. A Record of Plume-Induced Plate Rotation Triggering Subduction Initiation. Nature Geoscience, 14(8): 626-630. https://doi.org/10.1038/s41561-021-00780-7
      Hochstein, M. P., Sudarman, S., 1993. Geothermal Resources of Sumatra. Geothermics, 22(3): 181-200. https://doi.org/10.1016/0375-6505(93)90042-L
      Holder, R. M., Viete, D. R., Brown, M., et al., 2019. Metamorphism and the Evolution of Plate Tectonics. Nature, 572(7769): 378-381. https://doi.org/10.1038/s41586-019-1462-2
      Jiang, G. Z., Gao, P., Rao, S., et al., 2016. Compilation of Heat Flow Data in the Continental Area of China (4th Edition). Chinese Journal of Geophysics, 59(8): 2892-2910 (in Chinese with English abstract).
      Jiang, G. Z., Hu, S. B., Shi, Y. Z., et al., 2019. Terrestrial Heat Flow of Continental China: Updated Dataset and Tectonic Implications. Tectonophysics, 753: 36-48. https://doi.org/10.1016/j.tecto.2019.01.006
      Jiang, S., Wang, S., Qi, S. H., et al., 2020. Recent Advances in the Data-Driven Play Fairway Analysis for Geothermal Exploration. Geological Journal of China Universities, 26(1): 111-120 (in Chinese with English abstract).
      Johnston, F. K. B., Turchyn, A. V., Edmonds, M., 2011. Decarbonation Efficiency in Subduction Zones: Implications for Warm Cretaceous Climates. Earth and Planetary Science Letters, 303(1-2): 143-152. https://doi.org/10.1016/j.epsl.2010.12.049
      Kiyosu, Y., 1985. Isotopic Composition of Acid Sulfate-Chloride Waters and Volcanic Steam from some Volcanoes in Northeastern Japan. Journal of Volcanology and Geothermal Research, 26(1-2): 25-36. https://doi.org/10.1016/0377-0273(85)90045-9
      Korenaga, J., 2008. Urey Ratio and the Structure and Evolution of Earth's Mantle. Reviews of Geophysics, 46(2): RG2007. https://doi.org/10.1029/2007RG000241
      Korenaga, J., 2013. Initiation and Evolution of Plate Tectonics on Earth: Theories and Observations. Annual Review of Earth and Planetary Sciences, 41: 117-151. https://doi.org/10.1146/annurev-earth-050212-124208
      Kuang, J., Qi, S. H., Wang, S., et al., 2020. Granite Intrusion in Huizhou, Guangdong Province and Its Geothermal Implications. Earth Science, 45(4): 1466-1480 (in Chinese with English abstract).
      Kuang, J., Wang, S., Qi, S. H., et al., 2020. Cenozoic Tectonic Evolution of South China: A Brief Review, and New Insights from the Huangshadong-Shiba Area, South-East China. Geological Journal, 55(12): 7716-7737. https://doi.org/10.1002/gj.3870
      Lewis, A. J., Palmer, M. R., Sturchio, N. C., et al., 1997. The Rare Earth Element Geochemistry of Acid-Sulphate and Acid-Sulphate-Chloride Geothermal Systems from Yellowstone National Park, Wyoming, USA. Geochimica et Cosmochimica Acta, 61(4): 695-706. https://doi.org/10.1016/S0016-7037(96)00384-5
      Lewis, A. J., Komninou, A., Yardley, B. W. D., et al., 1998. Rare Earth Element Speciation in Geothermal Fluids from Yellowstone National Park, Wyoming, USA. Geochimica et Cosmochimica Acta, 62(4): 657-663. https://doi.org/10.1016/S0016-7037(97)00367-0
      Li, C. F., Zhou, D., Li, G., et al., 2021. Geodynamic Problems in the Western Pacific and Future Scientific Drill Targets. Earth Science, 46(3): 759-769 (in Chinese with English abstract).
      Lucazeau, F., 2019. Analysis and Mapping of an Updated Terrestrial Heat Flow Data Set. Geochemistry, Geophysics, Geosystems, 20(8): 4001-4024. https://doi.org/10.1029/2019GC008389
      Mao, J. W., Xie, G. Q., Guo, C. L., et al., 2008. Spatial-Temporal Distribution of Mesozoic Ore Deposits in South China and Their Metallogenic Settings. Geological Journal of China Universities, 14(4): 510-526 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2008.04.005
      Marini, L., Fung, A. Y., Sanchez, E., 2003. Use of Reaction Path Modeling to Identify the Processes Governing the Generation of Neutral Na-Cl and Acidic Na-Cl-SO4 Deep Geothermal Liquids at Miravalles Geothermal System, Costa Rica. Journal of Volcanology and Geothermal Research, 128(4): 363-387. https://doi.org/10.1016/S0377-0273(03)00226-9
      Merdith, A. S., Williams, S. E., Collins, A. S., et al., 2021. Extending Full-Plate Tectonic Models into Deep Time: Linking the Neoproterozoic and the Phanerozoic. Earth-Science Reviews, 214: 103477. https://doi.org/10.1016/j.earscirev.2020.103477
      Molina, F., Martí, J., 2016. The Borinquen Geothermal System (Cañas Dulces Caldera, Costa Rica). Geothermics, 64: 410-425. https://doi.org/10.1016/j.geothermics.2016.07.001
      Moore, W. B., Webb, A. A. G., 2013. Heat-Pipe Earth. Nature, 501(7468): 501-505. https://doi.org/10.1038/nature12473
      Mutschler, F. E., Ludington, S., Bookstrom, A. A., 2000. Giant Porphyry-Related Metal Camps of the World-A Database. U.S. Geological Survey Open-File Report 99-556, U.S. Geological Survey, Reston.
      Nanlohy, F., Kusnadi, D., Sulaeman, B., 2001. Geology and Geochemistry of Mataloko Geothermal Field, Central Flores, East Nusa Tenggara. Proceeding of the 5th Inaga Annual Scientific Conference & Exhibitions, Yogyakarta.
      Nordstrom, D. K., McCleskey, R. B., Ball, J. W., 2009. Sulfur Geochemistry of Hydrothermal Waters in Yellowstone National Park: Ⅳ Acid-Sulfate Waters. Applied Geochemistry, 24(2): 191-207. https://doi.org/10.1016/j.apgeochem.2008.11.019
      Ren, Z. L., Qi, K., Liu, R. C., et al., 2020. Dynamic Background of Early Cretaceous Tectonic Thermal Events and Its Control on Various Mineral Accumulations such as Oil and Gas in the Ordos Basin. Acta Petrologica Sinica, 36(4): 1213-1234 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.04.15
      Rolf, T., Coltice, N., Tackley, P. J., 2012. Linking Continental Drift, Plate Tectonics and the Thermal State of the Earth's Mantle. Earth and Planetary Science Letters, 351-352: 134-146. https://doi.org/10.1016/j.epsl.2012.07.011
      Sun, Z. J., Xue, L., Xu, Y. M., et al., 2012. Overview of Deep Learning. Application Research of Computers, 29(8): 2806-2810 (in Chinese with English abstract).
      Takahashi, M., Urai, M., Yasukawa, K., et al., 2000. Geochemistry of Hot Spring Waters at Bajawa Area, Central Flores, Nusa Tenggara Timur, Indonesia. Proceedings World Geothermal Congress, Kyushu-Tohoku.
      Tang, M., Chen, K., Rudnick, R. L., 2016. Archean Upper Crust Transition from Mafic to Felsic Marks the Onset of Plate Tectonics. Science, 351(6271): 372-375. https://doi.org/10.1126/science.aad5513
      Tian, J., Pang, Z. H., Guo, Q., et al., 2018. Geochemistry of Geothermal Fluids with Implications on the Sources of Water and Heat Recharge to the Rekeng High-Temperature Geothermal System in the Eastern Himalayan Syntax. Geothermics, 74: 92-105. https://doi.org/10.1016/j.geothermics.2018.02.006
      Tian, J., Pang, Z. H., Wang, Y. C., et al., 2019. Fluid Geochemistry of the Cuopu High Temperature Geothermal System in the Eastern Himalayan Syntaxis with Implication on Its Genesis. Applied Geochemistry, 110: 104422. https://doi.org/10.1016/j.apgeochem.2019.104422
      Wang, X. W., Wang, T. H., Gao, N. A., et al., 2022. Formation Mechanism and Development Potential of Geothermal Resources along the Sichuan-Tibet Railway. Earth Science, 47(3): 995-1011 (in Chinese with English abstract).
      Weller, O. M., St-Onge, M. R., 2017. Record of Modern-Style Plate Tectonics in the Palaeoproterozoic Trans-Hudson Orogen. Nature Geoscience, 10(4): 305-311. https://doi.org/10.1038/ngeo2904
      Wessel, P., Luis, J. F., Uieda, L., et al., 2019. The Generic Mapping Tools Version 6. Geochemistry, Geophysics, Geosystems, 20(11): 5556-5564. https://doi.org/10.1029/2019GC008515
      Zhang, L. C., Zhai, M. G., Wan, Y. S., et al., 2012. Study of the Precambrian BIF-Iron Deposits in the North China Craton: Progresses and Questions. Acta Petrologica Sinica, 28(11): 3431-3445 (in Chinese with English abstract).
      Zhang, W. J., Tan, H. B., Zhang, Y. F., et al., 2015. Boron Geochemistry from Some Typical Tibetan Hydrothermal Systems: Origin and Isotopic Fractionation. Applied Geochemistry, 63: 436-445. https://doi.org/10.1016/j.apgeochem.2015.10.006
      Zhong, S. J., Zhang, N., Li, Z. X., et al., 2007. Supercontinent Cycles, True Polar Wander, and very Long-Wavelength Mantle Convection. Earth and Planetary Science Letters, 261(3-4): 551-564. https://doi.org/10.1016/j.epsl.2007.07.049
      陈墨香, 1992. 新编中国温泉图及其说明. 地质科学, 27(S1): 322-332. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX1992S1031.htm
      陈墨香, 汪集旸, 1994. 中国地热研究的回顾和展望. 地球物理学报, 37(S1)320-338. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX4S1.029.htm
      陈墨香, 汪集旸, 邓孝, 1995. 中国地热学研究之进展. 地球科学, 20(4): 367-372. http://www.earth-science.net/article/id/229
      姜光政, 高堋, 饶松, 等, 2016. 中国大陆地区大地热流数据汇编(第四版). 地球物理学报, 59(8): 2892-2910. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201608015.htm
      蒋恕, 王帅, 祁士华, 等, 2020. 基于大数据分析的地热勘探潜力区预测方法的新进展. 高校地质学报, 26(1): 111-120. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX202001010.htm
      旷健, 祁士华, 王帅, 等, 2020. 广东惠州花岗岩体及其地热意义. 地球科学, 45(4): 1466-1480. doi: 10.3799/dqkx.2019.128
      李春峰, 周多, 李刚, 等, 2021. 西太平洋地球动力学问题与未来大洋钻探目标. 地球科学, 46(3): 759-769. doi: 10.3799/dqkx.2020.356
      毛景文, 谢桂青, 郭春丽, 等, 2008. 华南地区中生代主要金属矿床时空分布规律和成矿环境. 高校地质学报, 14(4): 510-526. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200804007.htm
      任战利, 祁凯, 刘润川, 等, 2020. 鄂尔多斯盆地早白垩世构造热事件形成动力学背景及其对油气等多种矿产成藏(矿)期的控制作用. 岩石学报, 36(4): 1213-1234. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202004015.htm
      孙志军, 薛磊, 许阳明, 等, 2012. 深度学习研究综述. 计算机应用研究, 29(8): 2806-2810. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ201208003.htm
      汪新伟, 王婷灏, 高楠安, 等. 2022. 川藏铁路沿线地热资源形成机理与开发潜力. 地球科学, 47(3): 995-1011. doi: 10.3799/dqkx.2022.059
      张连昌, 翟明国, 万渝生, 等, 2012. 华北克拉通前寒武纪BIF铁矿研究: 进展与问题. 岩石学报, 28(11): 3431-3445. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201211002.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(12)

      Article views (965) PDF downloads(142) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return