• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 6
    Jun.  2022
    Turn off MathJax
    Article Contents
    Yan Xiaohai, Guo Changbao, Liu Zaobao, Wang Yang, Liu Dongqiao, Liu Gui, 2022. Physical Simulation Experiment of Granite Rockburst in a Deep-Buried Tunnel in Kangding County, Sichuan Province, China. Earth Science, 47(6): 2081-2093. doi: 10.3799/dqkx.2021.153
    Citation: Yan Xiaohai, Guo Changbao, Liu Zaobao, Wang Yang, Liu Dongqiao, Liu Gui, 2022. Physical Simulation Experiment of Granite Rockburst in a Deep-Buried Tunnel in Kangding County, Sichuan Province, China. Earth Science, 47(6): 2081-2093. doi: 10.3799/dqkx.2021.153

    Physical Simulation Experiment of Granite Rockburst in a Deep-Buried Tunnel in Kangding County, Sichuan Province, China

    doi: 10.3799/dqkx.2021.153
    • Received Date: 2021-08-02
    • Publish Date: 2022-06-25
    • The deep-buried tunnel planned in Zheduo Mountain, Kangding County, Sichuan Province, is likely to rockburst due to its large buried depth and concentrated tectonic stress. In order to figure out the rockburst failure mechanism under different depths, in this study, the triaxial rockburst physical experiments of the granite in the Zheduo Mountain tunnel at different depths were carried out employing the stress monitoring system, high-speed camera system, and acoustic emission monitoring system. The phase characteristics, time characteristics, failure modes, and crack evolution of the granite in the Zheduo Mountain tunnel at different depths were studied with regard to the sound, light, and force and the experimental results show that the rockburst of Zheduo Mountain granite has obvious characteristics of time delaying rockburst (TDR). 770 m is the critical depth of the granite triaxial strength with one free face, and the lag characteristics of the excavation rockburst around this depth is obviously weakened. Rockburst at different depths can be divided into different stages: quiet period, splitting into plate stage, plate folding and spalling stage, and overall ejection stage. Rockburst acoustic emission characteristics reveal that the rockburst of Zheduo Mountain granite is mainly tensile failure, and with the increase of the depth, the number of tension cracks gradually increases and the number of shear cracks gradually decreases. According to the ratio of the stress difference and the uniaxial compressive strength at the time of the rockburst, the rockburst of Zheduo Mountain granite is divided into three failure modes: small particle ejection failure, rock slab splitting failure and mixed ejection failure, and the greater the stress ratio (σv-σh1)/σc is, the greater the rockburst intensity is.

       

    • loading
    • Cook, N. G. W., 1965. The Failure of Rock. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 2(4): 389-403. https://doi.org/10.1016/0148-9062(65)90004-5
      Fei, H. L., Xu, X. H., Tang, C. A., 2000. Study on Rock Burst by Means of Physical Simulation. China Mining Magazine, 9(6): 39-41(in Chinese with English abstract).
      Feng, X. T., Chen, B. R., Ming, H. J., et al., 2012. Evolution Law and Mechanism of Rockbursts in Deep Tunnels: Immediate Rockburst. Chinese Journal of Rock Mechanics and Engineering, 31(3): 433-444(in Chinese with English abstract).
      Feng, X. T., Xiao, Y. X., Feng, G. L., et al., 2019. Study on the Development Process of Rockbursts. Chinese Journal of Rock Mechanics and Engineering, 38(4): 649-673(in Chinese with English abstract).
      Guo, C. B., Wu, R. A., Jiang, L. W., et al., 2021. Typical Geohazards and Engineering Geological Problems along the Ya'an-Linzhi Section of the Sichuan-Tibet Railway, China. Geoscience, 35(1): 1-17(in Chinese with English abstract).
      He, M. C., Miao, J. L., Li, D. J., et al., 2007. Experimental Study on Rockburst Processes of Granite Specimen at Great Depth. Chinese Journal of Rock Mechanics and Engineering, 26(5): 865-876(in Chinese with English abstract).
      He, M. C., Xie, H. P., Peng, S. P., et al., 2005. Study on Rock Mechanics in Deep Mining Engineering. Chinese Journal of Rock Mechanics and Engineering, 24(16): 2803-2813(in Chinese with English abstract).
      He, M. C., Zhao, F., Du, S., et al., 2014. Rockburst Characteristics Based on Experimental Tests under Different Unloading Rates. Rock and Soil Mechanics, 35(10): 2737-2747, 2793(in Chinese with English abstract).
      Kaiser, P. K., Cai, M., 2012. Design of Rock Support System under Rockburst Condition. Journal of Rock Mechanics and Geotechnical Engineering, 4(3): 215-227. https://doi.org/10.3724/sp.j.1235.2012.00215
      Li, S. L., Feng, X. T., Wang, Y. J., et al., 2001. Evaluation of Rockburst Proneness in a Deep Hard Rock Mine. Journal of Northeastern University (Natural Science), 22(1): 60-63(in Chinese with English abstract).
      Li, T., Feng, X. T., Wang, R., et al., 2019. Characteristics of Rockburst Location Deflection and Its Microseismic Activities in a Deep Tunnel. Rock and Soil Mechanics, 40(7): 2847-2854(in Chinese with English abstract).
      Ortlepp, W. D., 2001. The Behaviour of Tunnels at Great Depth under Large Static and Dynamic Pressures. Tunnelling and Underground Space Technology, 16(1): 41-48. https://doi.org/10.1016/s0886-7798(01)00029-3
      Pan, G. T., Ren, F., Yin, F. G., et al., 2020. Key Zones of Oceanic Plate Geology and Sichuan-Tibet Railway Project. Earth Science, 45(7): 2293-2304(in Chinese with English abstract).
      Peng, J. B., Cui, P., Zhuang, J. Q., 2020. Challenges to Engineering Geology of Sichuan—Tibet Railway. Chinese Journal of Rock Mechanics and Engineering, 39(12): 2377-2389(in Chinese with English abstract).
      Qiu, S. L., Feng, X. T., Jiang, Q., et al., 2014. A Novel Numerical Index for Estimating Strainburst Vulnerability in Deep Tunnels. Chinese Journal of Rock Mechanics and Engineering, 33(10): 2007-2017(in Chinese with English abstract).
      Ren, Y., Wang, D., Li, T. B., et al., 2021. In-Situ Geostress Characteristics and Engineering Effect in Ya'an-Xinduqiao Section of Sichuan-Tibet Railway. Chinese Journal of Rock Mechanics and Engineering, 40(1): 65-76(in Chinese with English abstract).
      Su, G. S., Hu, L. H., Feng, X. T., et al., 2016a. True Triaxial Experimental Study of Rockburst Process under Low Frequency Cyclic Disturbance Load Combined with Static Load. Chinese Journal of Rock Mechanics and Engineering, 35(7): 1309-1322(in Chinese with English abstract).
      Su, G. S., Jiang, J. Q., Feng, X. T., et al., 2016b. Experimental Study of Ejection Process in Rockburst. Chinese Journal of Rock Mechanics and Engineering, 35(10): 1990-1999(in Chinese with English abstract).
      Wang, X. N., Huang, R. Q., 1998. Analysis of Deformation and Failure Features Characteristics of Rock under Unloalding Conditions and Their Effects on Rock Burst. Journal of Mountain Research, (4): 26-30(in Chinese with English abstract).
      Wang, Y., He, M. C., Liu, D. Q., et al., 2019. Rockburst in Sandstone Containing Elliptic Holes with Varying Axial Ratios. Advances in Materials Science and Engineering. https://doi.org/10.1155/2019/5169618
      Wen, T., Tang, H. M., Ma, J. W., et al., 2019. Deformation Simulation for Rock in Consideration of Initial Damage and Residual Strength. Earth Science, 44(2): 652-663(in Chinese with English abstract).
      Xu, L. S., 2003. Research on the Experimental Rock Mechanics of Rockburst under Unloading Condition. Journal of Chongqing Jiaotong University, 22(1): 1-4(in Chinese with English abstract).
      Xu, Z. X., Meng, W., Guo, C. B., et al., 2021. In-Situ Stress Measurement and Its Application of a Deep-Buried Tunnel in Zheduo Mountain, West Sichuan. Geoscience, 35(1): 114-125(in Chinese with English abstract).
      Yan, J., He, C., Wang, B., et al., 2020. Research on Characteristics and Mechanism of Rockburst Occurring in High Geo-Temperature and High Geo-Stress Tunnel. Journal of the China Railway Society, 42(12): 186-194 (in Chinese with English abstract).
      Zhang, C. Q., Lu, J. J., Chen, J., et al., 2017. Discussion on Rock Burst Proneness Indexes and Their Relation. Rock and Soil Mechanics, 38(5): 1397-1404(in Chinese with English abstract).
      Zhang, Y. S., Xiong, T. Y., Du, Y. B., et al., 2009. Geostress Characteristic and Simulation Experiment of Rockburst of a Deep-Buried Tunnel in Gaoligong Mountain. Chinese Journal of Rock Mechanics and Engineering, 28(11): 2286-2294(in Chinese with English abstract).
      Zhao, M. J., Wu, D. L., 1999. Ultrasonic Properties of Rock under Loading and Unloading: Theoretical Model and Experimental Research. Chinese Journal of Geotechnical Engineering, 21(5): 540-545(in Chinese with English abstract).
      Zhou, H., Meng, F. Z., Zhang, C. Q., et al., 2015. Review and Status of Research on Physical Simulation Test for Rockburst. Chinese Journal of Rock Mechanics and Engineering, 34(5): 915-923(in Chinese with English abstract).
      费鸿禄, 徐小荷, 唐春安, 2000. 岩爆的物理模拟及其机制的研究. 中国矿业, 9(6): 35-37. doi: 10.3969/j.issn.1004-4051.2000.06.012
      冯夏庭, 陈炳瑞, 明华军, 等, 2012. 深埋隧洞岩爆孕育规律与机制: 即时型岩爆. 岩石力学与工程学报, 31(3): 433-444. doi: 10.3969/j.issn.1000-6915.2012.03.001
      冯夏庭, 肖亚勋, 丰光亮, 等, 2019. 岩爆孕育过程研究. 岩石力学与工程学报, 38(4) : 649-673. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201904002.htm
      郭长宝, 吴瑞安, 蒋良文, 等, 2021. 川藏交通廊道雅安-林芝段典型地质灾害与工程地质问题. 现代地质, 35(1): 1-17.
      何满潮, 苗金丽, 李德建, 等, 2007. 深部花岗岩试样岩爆过程实验研究. 岩石力学与工程学报, 26(5): 865-876. doi: 10.3321/j.issn:1000-6915.2007.05.001
      何满潮, 谢和平, 彭苏萍, 等, 2005. 深部开采岩体力学研究. 岩石力学与工程学报, 24(16): 2803-2813. doi: 10.3321/j.issn:1000-6915.2005.16.001
      何满潮, 赵菲, 杜帅, 等, 2014. 不同卸载速率下岩爆破坏特征试验分析. 岩土力学, 35(10): 2737-2747, 2793. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201410001.htm
      李庶林, 冯夏庭, 王泳嘉, 等, 2001. 深井硬岩岩爆倾向性评价. 东北大学学报, 22(1): 60-63. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX200101017.htm
      李桐, 冯夏庭, 王睿, 等, 2019. 深埋隧道岩爆位置偏转及其微震活动特征. 岩土力学, 40(7): 2847-2854. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907040.htm
      潘桂棠, 任飞, 尹福光, 等, 2020. 洋板块地质与川藏交通廊道工程地质关键区带. 地球科学, 45(7): 2293-2304. doi: 10.3799/dqkx.2020.070
      彭建兵, 崔鹏, 庄建琦, 2020. 川藏交通廊道对工程地质提出的挑战. 岩石力学与工程学报, 39(12): 2377-2389.
      邱士利, 冯夏庭, 江权, 等, 2014. 深埋隧洞应变型岩爆倾向性评估的新数值指标研究. 岩石力学与工程学报, 33(10): 2007-2017. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201410007.htm
      任洋, 王栋, 李天斌, 等, 2021. 川藏交通廊道雅安至新都桥段地应力特征及工程效应分析. 岩石力学与工程学报, 40(1): 65-76.
      苏国韶, 胡李华, 冯夏庭, 等, 2016a. 低频周期扰动荷载与静载联合作用下岩爆过程的真三轴试验研究. 岩石力学与工程学报, 35(7): 1309-1322. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201607002.htm
      苏国韶, 蒋剑青, 冯夏庭, 等, 2016b. 岩爆弹射破坏过程的试验研究. 岩石力学与工程学报, 35(10): 1990-1999. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201610006.htm
      王贤能, 黄润秋, 1998. 岩石卸荷破坏特征与岩爆效应. 山地研究, (4): 26-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA804.005.htm
      温韬, 唐辉明, 马俊伟, 等, 2019. 考虑初始损伤和残余强度的岩石变形过程模拟. 地球科学, 44(2): 652-663. doi: 10.3799/dqkx.2018.212
      徐林生, 2003. 卸荷状态下岩爆岩石力学试验. 重庆交通学院学报, 22(1): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT200301001.htm
      徐正宣, 孟文, 郭长宝, 等, 2021. 川西折多山某深埋隧道地应力测量及其应用研究. 现代地质, 35(1): 114-125. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202101013.htm
      严健, 何川, 汪波, 等, 2020. 高地温高应力隧道岩爆特征及机制研究. 铁道学报, 42(12): 186-194. doi: 10.3969/j.issn.1001-8360.2020.12.024
      张传庆, 卢景景, 陈珺, 等, 2017. 岩爆倾向性指标及其相互关系探讨. 岩土力学, 38(5): 1397-1404. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201705023.htm
      张永双, 熊探宇, 杜宇本, 等, 2009. 高黎贡山深埋隧道地应力特征及岩爆模拟试验. 岩石力学与工程学报, 28(11): 2286-2294. doi: 10.3321/j.issn:1000-6915.2009.11.018
      赵明阶, 吴德伦, 1999. 单轴受荷条件下岩石的声学特性模型与实验研究. 岩土工程学报, 21(5): 540-545. doi: 10.3321/j.issn:1000-4548.1999.05.003
      周辉, 孟凡震, 张传庆, 等, 2015. 岩爆物理模拟试验研究现状及思考. 岩石力学与工程学报, 34(5): 915-923. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201505006.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(18)  / Tables(5)

      Article views (948) PDF downloads(52) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return