• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 8
    Sep.  2022
    Turn off MathJax
    Article Contents
    Yuan Yanwei, Fei Guangchun, Zheng Luo, Jiang Jianwen, Ma Zhiping, Jiang Xiaomei, Zhang Gui, 2022. U⁃Pb Age and Lu⁃Hf Isotope of Detrital Zircons, Geochemical Characteristics and Geological Significance for Zhuwo Formation Meta⁃Sedimentary Rocks in Ke'eryin Region, Western Sichuan. Earth Science, 47(8): 2902-2924. doi: 10.3799/dqkx.2021.163
    Citation: Yuan Yanwei, Fei Guangchun, Zheng Luo, Jiang Jianwen, Ma Zhiping, Jiang Xiaomei, Zhang Gui, 2022. U⁃Pb Age and Lu⁃Hf Isotope of Detrital Zircons, Geochemical Characteristics and Geological Significance for Zhuwo Formation Meta⁃Sedimentary Rocks in Ke'eryin Region, Western Sichuan. Earth Science, 47(8): 2902-2924. doi: 10.3799/dqkx.2021.163

    U⁃Pb Age and Lu⁃Hf Isotope of Detrital Zircons, Geochemical Characteristics and Geological Significance for Zhuwo Formation Meta⁃Sedimentary Rocks in Ke'eryin Region, Western Sichuan

    doi: 10.3799/dqkx.2021.163
    • Received Date: 2021-06-25
    • Publish Date: 2022-09-25
    • In order to decipher the provenance system of the Triassic Zhuwo Formation meta⁃sedimentary rocks and its genetic relationship with Lijiagou pegmatite in Ke'eryin area, LA⁃ICP⁃MS U⁃Pb micro⁃dating, Lu⁃Hf isotope analysis of detrital zircons and whole⁃rock geochemical analysis of meta⁃sedimentary rocks were conducted. Geochemical analysis results show that the meta⁃sedimentary rocks of Zhuwo Formation are characterized by high SiO2 and Al2O3 content. The chondrite⁃normalized REE patterns are characterised by light REE enrichment, which is similar to the Late Archean sedimentary rocks in Australia(PASS). Detrital Zircons show magmatic oscillating zonation, and are partially sorrounded by metamorphic accretionary rims due to recrystallization.U⁃Pb age of detrital zircons yields two main clusters at 313~227 Ma and 461~401 Ma, as well as two minor clusters at 938~774 Ma and 2 048~1 928 Ma. εHf(t) values of detrital zircons varies from -17.1 to +13.3 with two⁃stage Hf model ages(TDM2) of 3 240~499 Ma. Based on the results above, we conclude that the provenance of Zhuwo Formation meta⁃sedimentary rocks in Ke'eryin includes felsicrocks from continental arcsac companied by some recycled materials mainly receiving materials from East Kunlun, North Qinling orogenic belt and Yangtze blocks. Lijiagou pegmatite in Ke'eryin area was formed by direct partial melting of Triassic Zhuwo Formation meta⁃sedimentary rocks.

       

    • loading
    • Bai, X.Z., He, M.Y., Wang, Y.T., et al., 2010. Analysis of Geochemical Characteristics, Provenance Area and Paleo WeatheringDegree of Xikang Group in Ruo'ergai Area, Sichuan. Geoscience, 24(1): 151-157 (in Chinese with English abstract).
      Bhatia, M. R., Crook, K. A. W., 1986. Trace Element Characteristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basins. Contributions to Mineralogy and Petrology, 92(2): 181-193. https://doi.org/10.1007/bf00375292
      Barros, R., Menuge, J. F., 2016. The Origin of Spodumene Pegmatites Associated with the Leinster Granite in Southeast Ireland. The Canadian Mineralogist, 54(4): 847-862. https://doi.org/10.3749/canmin.1600027
      Chen, B., Huang, C., Zhao, H., 2020. Lithium and Nd Isotopic Constraints on the Origin of Li-Poor Pegmatite with Implications for Li Mineralization. Chemical Geology, 551(6): 119769. https://doi.org/10.1016/j.chemgeo.2020.119769
      Cox, R., Lowe, D. R., Cullers, R. L., 1995. The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in the Southwestern United States. Geochimica et Cosmochimica Acta, 59(14): 2919-2940. https://doi.org/10.1016/0016-7037(95)00185-9
      Chen, Y. L., Li, D. P., Zhou, J., et al., 2009. U-Pb Dating, Geochemistry, and Tectonic Implications of the Songpan-Ganzi Block and the Longmen Shan, China. Geochemical Journal, 43(2): 77-99. https://doi.org/10.2343/geochemj.1.0009
      Deng, Y., Fei, G.C., Li, J., et al., 2018. Study on C-H-O Isotopes and Geochronology of the Lijiagou Pegmatite Spodumene Deposit in Sichuan Province. Mineral Petrology, 38(3): 40-47 (in Chinese with English abstract).
      Dill, H. G., 2018. Geology and Chemistry of Variscan-Type Pegmatite Systems (SE Germany) with Special Reference to Structural and Chemical Pattern Recognition of Felsic Mobile Components in the Crust. Ore Geology Reviews, 92(41-6): 205-239. https://doi.org/10.1016/j.oregeorev.2017.11.016
      Ding, L., Yang, D., Cai, F. L., et al., 2013. Provenance Analysis of the Mesozoic Hoh-Xil-Songpan-Ganzi Turbidites in Northern Tibet: Implications for the Tectonic Evolution of the Eastern Paleo-Tethys Ocean. Tectonics, 32(1): 34-48. https://doi.org/10.1002/tect.20013
      Enkelmann, E., Weislogel, A., Ratschbacher, L., et al., 2007. How was the Triassic Songpan-Ganzi Basin Filled? a Provenance Study. Tectonics, 26(4): 4007. https://doi.org/10.1029/2006tc002078
      Floyd, P.A., Leveridge, B.E., 1987. Tectonic Environment of the Devonian Gramscatho Basin, South Cornwall: Framework Mode and Geochemical Evidence from Turbiditic Sandstones. Jour. Geol. Soc. London, 144(4): 531-542. https://doi.org/10.1144/gsjgs.144.4.0531
      Federico, L., Capponi, G., Crispini, L., et al, 2004. Exhumation of Alpine Aigh-Pressure Rocks: Insights from Petrology of Eclogite Clasts in the Tertiary Piedmontese Basin (Ligurian Alps, Italy). Lithos, 74(1-2): 21-40. https://doi.org/10.1016/j.lithos.2003.12.001
      Fei, G. C., Menuge, J. F., Chen, C. S., et al., 2021. Evolution of Pegmatite Ore-Forming Fluid: The Lijiagou Spodumene Pegmatites in the Songpan-Garze Fold Belt, Southwestern Sichuan Province, China. Ore Geology Reviews, 139(4): 104441. https://doi.org/10.1016/j.oregeorev.2021.104441
      Fei, G. C., Menuge, J. F., Li, Y. Q., et al., 2020. Petrogenesis of the Lijiagou Spodumene Pegmatites in Songpan-Garze Fold Belt, West Sichuan, China: Evidence from Geochemistry, Zircon, Cassiterite and Coltan U-Pb Geochronology and Hf Isotopic Compositions. Lithos, 364-365(3): 105555. https://doi.org/10.1016/j.lithos.2020.105555
      Fei, G.C., Yang, Z., Yang, J.Y., et al., 2020. New Precise Timing Constraint for the Dangba Granitic Pegmatite Type Rare-Metal Deposit, Markam, Sichuan Province, Evidence from Cassiterite LA-MC-ICP-MS U-Pb Dating. Acta Geologica Sinica, 94(3): 836-849 (in Chinese with English abstract).
      Fei, G.C., Yuan, T.J., Tang, W.C., et al., 2014. Classification Analysis of Ore-Bearing Pegmatite in Ke'eryin Orefield, West Sichuan. Mineral Deposit, 33(Suppl. ): 187-188 (in Chinese with English abstract).
      Feng, R., Kerrich, R., 1990. Geochemistry of Fine-Grained Clastic Sediments in the Archean Abitibi Greenstone Belt, Canada: Implications for Provenance and Tectonic Setting. Geochimica et Cosmochimica Acta, 54(4): 1061-1081. https://doi.org/10.1016/0016-7037(90)90439-r
      Gu, C.H., 2014. Metallogenic Regularity of Spodumene Deposits in the Closely Spaced Pegmatite Area in the Southeastern Ke'eryin Pegmatite Field, Sichuan Province. Contributions to Geology and Mineral Resources Research, 29(1): 59-65 (in Chinese with English abstract).
      Guo, Z.F., Deng, J.F., Xu, Z.Q., et al., 1998. Late Palaeozoic-Mesozoic Intracontinental Orogenic Process and Intermediate-Acidic-Igneous Rocks From the Eastern Kunlun Mountains of Northwestern China. Geoscience, 12(3): 344-352 (in Chinese with English abstract).
      Gu, X. X., Liu, J. M., Zheng, M. H., et al., 2002. Provenance and Tectonic Setting of the Proterozoic Turbidites in Hunan, South China: Geochemical Evidence. Journal of Sedimentary Research, 72(3): 393-407. https://doi.org/10.1306/081601720393
      Gong, D. X., Wu, C. H., Zou, H., et al., 2021. Provenance Analysis of Late Triassic Turbidites in the Eastern Songpan-Ganzi Flysch Complex: Sedimentary Record of Tectonic Evolution of the Eastern Paleo-Tethys Ocean. Marine and Petroleum Geology, 126(B8): 104927. https://doi.org/10.1016/j.marpetgeo.2021.104927
      Huang, H.Y., He, D.F., Li, Y.Q., et al., 2019. Determination and Formation Mechanism of the Luzhou Paleo-Uplift in the Southeastern Sichuan Basin. Earth Science Frontiers, 26(1): 102-120(in Chinese with English abstract).
      Hu, J.M., Meng, Q.R., Shi, Y.R., et al., 2005. SHRIMP U-Pb Dating of Zircons from Granitoid Bodies in the Songpan-Ganzi Terrane and Its Implications. Acta Petrologica Sinica, 21(3): 867-880 (in Chinese with English abstract).
      Jian, X., Weislogel, A., Pullen, A., 2019. Triassic Sedimentary Filling and Closure of the Eastern Paleo‐Tethys Ocean: New Insights from Detrital Zircon Geochronology of Songpan‐Ganzi, Yidun, and West Qinling Flysch in Eastern Tibet. Tectonics, 38(2): 767-787. https://doi.org/10.1029/2018tc005300
      Liao, Y.A., Yao, X.L., 1992. Evolution Feature and Minerogenetic Ralations Peraluminous Granites from Jinchuan, Western Sichuan. Mineral Petrology, 12(1): 12-22 (in Chinese with English abstract).
      Liu, F., Chen, Y.L., Su, B.X., et al., 2006. Geochemistry and Zircon Ages of Triassic Detrital Sedimentary Rocks from the Garze-Songpan Block. Acta Geoscientica Sinica, 27(4): 289-296 (in Chinese with English abstract).
      Li, J.K., 2006. Mineralizing Mechanism and Continental Geodynamics of Typical Pegmatite Deposits in Western, Sichuan, China(Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Li, P., Li, J. K., Chou, I. M., et al., 2019. Mineralization Epochs of Granitic Rare-Metal Pegmatite Deposits in the Songpan-Ganzê Orogenic Belt and their Implications for Orogeny. Minerals, 9(5): 280. https://doi.org/10.3390/min9050280
      Li, Z.W., Song, T.H., Wang, Z.J., et al., 2021. Strike Variation Evolution of the Basin-Mountain System in Western Sichuan Longmenshan as Recorded by Deformation Exhumation and Deposition and Discussion on the Period of Key Structural Transformation. Journal of Chengdu University of Technology (Science and Technology Edition), 48(3): 257-282(in Chinese with English abstract).
      Ludwig, K.R., 2003. ISOPLOT: A Geochronological Toolkit for Microsoft Excel. Berkeley geochronology center special publication, Berkeley.
      Nance, W. B., Taylor, S. R., 1976. Rare Earth Element Patterns and Crustal Evolution-I. Australian Post-Archean Sedimentary Rocks. Geochimica et Cosmochimica Acta, 40(12): 1539-1551. https://doi.org/10.1016/0016-7037(76)90093-4
      Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299(5885): 715-717. https://doi.org/10.1038/299715a0
      Mclennan, S.M., 1989. Rare Earth Elements in Sedimentary Rocks: Influence of Provenance and Sedimentary Processes. Reviews in Mineralogy and Geochemistry, 21(1): 169-200.
      Mu, H.X., 2020. Formation and Evolution of the Late Triassic Foreland Basin in Western Sichuan(Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).
      Pei, L., Li, R.B., Pei, X.Z., et al., 2017. Sediment Source Analysis for the Maerzheng Formation Sandstone in Gerizhuotuo Area, Southern Margin of East Kunlun Region: Evidence for Detrital Zircon U-Pb Geochronology. Acta Geologica Sinica, 91(6): 1326-1344(in Chinese with English abstract).
      Qin, Y.L., Li, M.Z., Xiong, C.L., et al., 2020. Depositional Provinces and Tectonic Background of the Zhuwo Formation in the Jiajika Region, Western Sichuan Province: Evidence from Detrital Zircon U-Pb Ages. Acta Geologica Sinica, 94(8): 2400-2409 (in Chinese with English abstract).
      Ren, G.M., Pang, W.H., Wang, L.Q., et al, 2020. Detrital Zircons of 3.8 Ga Southwestern Yangtze Block and Its Geological Implications. Earth Science, 45(8): 3040-3053 (in Chinese with English abstract).
      Roda-Robles, E., Villaseca, C., Pesquera, A., et al., 2018. Petrogenetic Relationships Between Variscan Granitoids and Li-(F-P)-Rich Aplite-Pegmatites in the Central Iberian Zone: Geological and Geochemical Constraints and Implications for Other Regions from the European Variscides. Ore Geology Reviews, 95: 408-430. https://doi.org/10.1016/j.oregeorev.2018.02.027
      Selway, J.B., Breaks, F.W., Tindle, A.G., 2005. A Review of Rare-Element (Li-Cs-Ta) Pegmatite Exploration Techniques for the Superior Province, Canada, and Large Worldwide Tantalum Deposits. Exploration and Mining Geology, 14(1/2/3/4): 1-30. https://doi.org/10.2113/gsemg.14.1-4.1
      Shaw, D. M., 1972. The Origin of the Apsley Gneiss, Ontario. Canadian Journal of Earth Sciences, 9(1): 18-35. https://doi.org/10.1139/e72-002
      Shi, Y., Yu, J. H., Santosh, M., 2013. Tectonic Evolution of the Qinling Orogenic Belt, Central China: New Evidence from Geochemical, Zircon U-Pb Geochronology and Hf Isotopes. Precambrian Research, 231(Suppl. ): 19-60. https://doi.org/10.1016/j.precamres.2013.03.001
      Simonen, A., 1953. Stratigraphy and Sedimentation of the Svecofennidic, Early Archean Supracrustal Rocks in southwestern Finland. Bulletin of the Geological Society of Finland, 160: 1-64.
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Sun, W. H., Zhou, M. F., 2008. The ∼860 Ma, Cordilleran‐Type Guandaoshan Dioritic Pluton in the Yangtze Block, SW China: Implications for the Origin of Neoproterozoic Magmatism. The Journal of Geology, 116(3): 238-253. https://doi.org/10.1086/587881
      Sonder, L. J., England, P. C., Wernicke, B. P., et al., 1987. A Physical Model for Cenozoic Extension of Western North America. Geological Society, London, Special Publications, 28(1): 187-201. https://doi.org/10.1144/gsl.sp.1987.028.01.14
      Vervoort, J. D., Patchett, P. J., Söderlund, U., et al., 2004. Isotopic Composition of Yb and the Determination of Lu Concentrations and Lu/Hf Ratios by Isotope Dilution Using MC-ICPMS. Geochemistry, Geophysics, Geosystems, 5(11): 1-5. https://doi.org/10.1029/2004gc000721
      Weislogel, A. L., Graham, S. A., Chang, E. Z., et al., 2010. Detrital Zircon Provenance from Three Turbidite Depocenters of the Middle-Upper Triassic Songpan-Ganzi Complex, Central China: Record of Collisional Tectonics, Erosional Exhumation, and Sediment Production. Geological Society of America Bulletin, 122(11/12): 2041-2062. https://doi.org/10.1130/b26606.1
      Weislogel, A. L., Graham, S. A., Chang, E. Z., et al., 2006. Detrital Zircon Provenance of the Late Triassic Songpan-Ganzi Complex: Sedimentary Record of Collision of the North and South China Blocks. Geology, 34(2): 97. https://doi.org/10.1130/g21929.1
      Wang, K., Wang, L.X., Ma, C.Q., et al., 2020. Petrogenesis and Geological Implication of the Middle Triassic Garnet-Bearing Two-Mica Granite from Jialuhe Region, East Kunlun. Earth Science, 45(2): 400-418 (in Chinese with English abstract).
      Wang, T., Wang, X.X., Tian, W., et al., 2009. North Qinling Paleozoic Granite Associations and Their Variation in Space and Time: Implications For Orogenic Processes in the Orogens of Central China. Scientia Sinica Terrae, 39(7): 949-971 (in Chinese with English abstract).
      Wang, X.X., Wang, T., Zhang, C.L., 2015. Granitoid Magmatism in the Qinling Orogen, Central China and Its Bearing on Orogenic Evolution. Scientia Sinica Terrae, 45(8): 1109-1125 (in Chinese with English abstract). doi: 10.1360/zd2015-45-8-1109
      Wang, W., Li, F.L., Bao, Z.Y., 2007. U-Pb Constraints on Provenance and Evolution of Middle to Late Triassic Sediment in Songpan-Garze Basin. Geological Science and Technology Information, 26(6): 35-44 (in Chinese with English abstract).
      Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract).
      Wu, Y.B., Zheng, Y., 2004. Zircon Genetic Mineralogy and its Constraints on U-Pb Age Interpretation. Chinese Science Bulletin, 49(16): 1589-1604 (in Chinese with English abstract). doi: 10.1360/csb2004-49-16-1589
      Xu, J.B., Fei, G.C., Qin, L.Y., et al., 2020. LA-MC-ICP-MS U-Pb Dating of Cassiterite from the Lijiagou Pegmatitetype Rare-Metal Deposit in the Ke'eryin Orefield, Sichuan Province and Its Geological Implication. Geology and Exploration, 56(2): 346-358 (in Chinese with English abstract).
      Xu, Q., Jiang, T., Hou, L.C., et al., 2021. Detrital Zircon Composition of U-Pb Ages and Hf Isotope for the Sandstone of the Liantuo Formation from the Three Gorges Area, Yangtze Block and its Geological Significance. Earth Science, 46(4): 1217-1230 (in Chinese with English abstract).
      Xu, Z.Q., Wang, R.C., Zhao, Z.B., et al., 2018. On the Structure Backgrounds of the Large-Scale "Hard-Rock"Type Lithium Ore Belts in China. Acta Geologica Sinica, 92(6): 1091-1106 (in Chinese with English abstract).
      Yu, Y.S., Liao, S.P., Pan, Z.X., et al., 2018. Geochemical Characteristics and Formation Background of Triassic Fine Clastic Rocks in Daofu Area, Western Sichuan. Mineral Petrology, 38(2): 94-103 (in Chinese with English abstract).
      Zeng, Y.J., Huang, S.J., Kan, Z.Z., et al., 2006. Geochemical Characteristics and Tectonic Setting of the Xikang Group of Triassic in Western Sichuan. Sedimentary Geology and Tethyan Geology, 26(1): 22-29 (in Chinese with English abstract).
      Zhai, M.G., Bian, A.G., 2000. Late Neoarchean Supercontinent Merging and Paleoproterozoic Mid-Proterozoic Pyrolysis in North China Craton. Science in China (Series D), 30(Supp. ): 129-137 (in Chinese with English abstract).
      Zhao, J.H., Zhou, M.F., 2008. Neoproterozoic Adakitic Plutons in the Northern Margin of the Yangtze Block, China: Partial Melting of a Thickened Lower Crust and Implications for Secular Crustal Evolution. Lithos, 104(1-4): 231-248. https://doi.org/10.1016/j.lithos.2007.12.009
      Zhao, Z.H., 1997. Geochemistry of Trace Elements. Science Press, Beijing, 1-238 (in Chinese).
      Zhang, Y.X., Zeng, L, Li, Z.W., et al., 2015. Late PermianBeijing: Triassic Siliciclastic Provenance, Palaeogeography, and Crustal Growth of the SongpanTerrane, Eastern Tibetan Plateau: Evidence from UBeijing: Pb Ages, Trace Elements, and Hf Isotopes of Detrital Zircons. Geology Review, 57(2): 159-181. https://doi.org/10.1080/00206814.2014.999356
      白宪洲, 何明友, 王玉婷, 等, 2010. 四川若尔盖地区西康群地球化学特征及其物源区和古风化程度分析. 现代地质, 24(1): 151-157. doi: 10.3969/j.issn.1000-8527.2010.01.018
      邓运, 费光春, 李剑, 等, 2018. 四川李家沟伟晶岩型锂辉石矿床碳氢氧同位素及成矿时代研究. 矿物岩石, 38(3): 40-47. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201803006.htm
      费光春, 杨峥, 杨继忆, 等, 2020. 四川马尔康党坝花岗伟晶岩型稀有金属矿床成矿时代的限定: 来自LA-MC-ICP-MS锡石定年的证据. 地质学报, 94 (3): 836-849. doi: 10.3969/j.issn.0001-5717.2020.03.012
      费光春, 袁天晶, 唐文春, 等, 2014. 川西可尔因伟晶岩型稀有金属矿床含矿伟晶岩分类浅析. 矿床地质, 33(5): 187-188. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2014S1096.htm
      古城会, 2014. 四川省可尔因伟晶岩田东南密集区锂辉石矿床成矿规律. 地质找矿论丛, 29(1): 59-65. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK201401007.htm
      郭正府, 邓晋福, 许志琴, 等, 1998. 青藏东昆仑晚古生代末-中生代中酸性火成岩与陆内造山过程. 现代地质, (3): 51-59. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ803.006.htm
      黄涵宇, 何登发, 李英强, 等, 2019. 四川盆地东南部泸州古隆起的厘定及其成因机制. 地学前缘, 26(1): 102-120. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201901012.htm
      胡健民, 孟庆任, 石玉若, 等, 2005. 松潘-甘孜地体内花岗岩锆石SHRIMP U-Pb定年及其构造意义. 岩石学报, (3): 867-880. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503027.htm
      廖远安, 姚学良, 1992. 金川-过铝多阶段花岗岩体演化特征及其与成矿关系. 矿物岩石, (1): 12-22. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS199201002.htm
      刘飞, 陈岳龙, 苏本勋, 兰中伍, 等, 2006. 松潘-甘孜地区三叠系碎屑沉积岩地球化学特征及其锆石年龄研究. 地球学报, 27(4): 289-296. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200604001.htm
      李建康, 2006. 川西典型伟晶岩型矿床的形成机理及其大陆动力学背景(博士毕业论文). 北京: 中国地质大学.
      李智武, 宋天慧, 王自剑, 等, 2021. 川西-龙门山盆山系统走向差异演化的变形、隆升和沉积记录及关键构造变革期讨论. 成都理工大学学报(自然科学版), 48(3): 257-282. doi: 10.3969/j.issn.1671-9727.2021.03.01
      木红旭, 2020. 川西晚三叠世前陆盆地的形成与演化(博士毕业论文). 北京: 中国地质大学.
      裴磊, 李瑞保, 裴先治, 等, 2017. 东昆仑南缘哥日卓托地区马尔争组沉积物源分析: 碎屑锆石U-Pb年代学证据. 地质学报, 91(6): 1326-1344. doi: 10.3969/j.issn.0001-5717.2017.06.012
      秦宇龙, 李名则, 熊昌利, 等, 2020. 川西甲基卡地区侏倭组沉积物源分析——来自碎屑锆石U-Pb年龄证据. 地质学报, 94(8): 2400-2409. doi: 10.3969/j.issn.0001-5717.2020.08.016
      任光明, 庞维华, 王立全, 等, 2020. 扬子陆块西南缘3.8 Ga碎屑锆石及其地质意义. 地球科学, 45 (8): 3040-3053. doi: 10.3799/dqkx.2020.095
      王珂, 王连训, 马昌前, 等, 2020. 东昆仑加鲁河中三叠世含石榴石二云母花岗岩的成因及地质意义. 地球科学, 45 (2): 400-418. doi: 10.3799/dqkx.2018.393
      王涛, 王晓霞, 田伟, 等, 2009. 北秦岭古生代花岗岩组合、岩浆时空演变及其对造山作用的启示. 中国科学(D辑: 地球科学), 39(7): 949-971. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200907008.htm
      王伟, 李方林, 鲍征宇, 2007. 松潘-甘孜盆地中、晚三叠世沉积物来源及演化的锆石U-Pb年代学制约. 地质科技情报, (5): 35-44. doi: 10.3969/j.issn.1000-7849.2007.05.007
      王晓霞, 王涛, 张成立, 2015. 秦岭造山带花岗质岩浆作用与造山带演化. 中国科学: 地球科学, 45(8): 1109-1125. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201508003.htm
      吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, (2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm
      吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, (16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
      许家斌, 费光春, 覃立业, 等, 2020. 四川可尔因矿田李家沟伟晶岩型稀有金属矿床锡石LA-MC-ICP-MS U-Pb定年及地质意义. 地质与勘探, 56 (2): 346-358. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT202002010.htm
      徐琼, 江拓, 侯林春, 等, 2021. 扬子陆块三峡地区莲沱组砂岩中碎屑锆石U-Pb年龄、Hf同位素组成及其地质意义. 地球科学, 46 (4): 1217-1230. doi: 10.3799/dqkx.2020.168
      许志琴, 王汝成, 赵中宝, 等, 2018. 试论中国大陆"硬岩型"大型锂矿带的构造背景. 地质学报, 92 (6): 1091-1106. doi: 10.3969/j.issn.0001-5717.2018.06.001
      于远山, 廖声萍, 潘忠习, 等, 2018. 川西道孚地区三叠系细碎屑岩的地球化学特征及成生背景. 矿物岩石, 38(2): 94-103. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201802011.htm
      曾宜君, 黄思静, 阚泽忠, 等, 2006. 四川西部三叠系西康群地球化学特征与大地构造背景. 沉积与特提斯地质, (1): 22-29. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD200601003.htm
      翟明国, 卞爱国, 2000. 华北克拉通新太古代末超大陆拼合及古元古代末-中元古代裂解. 中国科学(D辑: 地球科学), (增刊): 129-137. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2000S1016.htm
      赵振华, 1997. 微量元素地球化学原理. 北京: 科学出版社, 1-238.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(13)  / Tables(4)

      Article views (1242) PDF downloads(88) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return