Citation: | Huang Faming, Chen Jiawu, Fan Xuanmei, Huang Jinsong, Zhou Chuangbing, 2022. Logistic Regression Fitting of Rainfall-Induced Landslide Occurrence Probability and Continuous Landslide Hazard Prediction Modelling. Earth Science, 47(12): 4609-4628. doi: 10.3799/dqkx.2021.164 |
It is significant to improve the warning accuracy and spatial identification of rainfall-induced landslides. This study takes 156 typical rainfall-induced landslide events from 1980 to 2001 in Ningdu County Jiangxi Province, China as a case. Firstly, the time probability levels of different rainfall-induced landslides are calculated based on traditional EE-D (early effective rainfall-rainfall duration) threshold. Then taking each time probability corresponding to each level critical rainfall threshold curve as dependent variable, and its early effective rainfall (early effective rainfall, EE) and rainfall duration (D) as independent variables, logistic regression is adopted to fitting nonlinear mapping relationship between probability of rainfall-induced landslides and EE and D to obtain continuous probability of landslides. Furthermore, prediction performance of landslide susceptibility between C5.0 decision tree and multilayer perceptron is compared. Finally, continuous probability of rainfall-induced landslides is coupled with landslide susceptibility to realize continuous landslide hazard warning. Results show follows: (1) logistic regression fitting equation of continuous probability rainfall-induced landslides is 1/P=1+e4.062+0.747 4×D-0.079 44×EE with R2 of 0.983. (2) most of 20 rainfall-induced landslides from 2002 to 2003 used for continuous probability critical rainfall threshold test fell in areas with continuous probability greater than 0.7, and only 4 of them fell in areas less than 0.7. (3) the C5.0 DT model has a better prediction performance than the multilayer perceptron. (4) the continuous probability hazard values of four rainfall-type landslides in the past five years are above 0.8, and the areas of high and very high warning zone are smaller than those of traditional landslide hazard warning. It is concluded that compared with the traditional hazard zoning method, the continuous landslide hazard warning method has higher warning accuracy and spatial identification, and the real time landslide hazard map carrying out spatial and time warning can be obtained through combination of landslide critical rainfall threshold and landslide susceptibility map.
Aditian, A., Kubota, T., Shinohara, Y., 2018. Comparison of GIS⁃Based Landslide Susceptibility Models Using Frequency Ratio, Logistic Regression, and Artificial Neural Network in a Tertiary Region of Ambon, Indonesia. Geomorphology, 318: 101-111. https://doi.org/10.1016/j.geomorph.2018.06.006
|
Althuwaynee, O. F., Asikoglu, O., Eris, E., 2018. Threshold Contour Production of Rainfall Intensity that Induces Landslides in Susceptible Regions of Northern Turkey. Landslides, 15(8): 1541-1560. https://doi.org/10.1007/s10346⁃018⁃0968⁃2
|
Arabameri, A., Pradhan, B., Lombardo, L., 2019. Comparative Assessment Using Boosted Regression Trees, Binary Logistic Regression, Frequency Ratio and Numerical Risk Factor for Gully Erosion Susceptibility Modelling. CATENA, 183: 104223. https://doi.org/10.1016/j.catena.2019.104223
|
Chahal, P., Rana, N., Champati, R. P. K., et al., 2017. Identification of Landslide⁃Prone Zones in the Geomorphically and Climatically Sensitive Mandakini Valley, (Central Himalaya), for Disaster Governance Using the Weights of Evidence Method. Geomorphology, 284: 41-52. https://doi.org/10.1016/j.geomorph.2016.11.008
|
Chen, T., Zhong, Z. Y., Niu, R. Q., et al., 2020. Mapping Landslide Susceptibility Based on Deep Belief Network. Geomatics and Information Science of Wuhan University, 45(11): 1809-1817(in Chinese with English abstract).
|
Chen, W., Peng, J. B., Hong, H. Y., et al., 2018. Landslide Susceptibility Modelling Using GIS⁃Based Machine Learning Techniques for Chongren County, Jiangxi Province, China. Science of the Total Environment, 626: 1121-1135. https://doi.org/10.1016/j.scitotenv.2018.01.124
|
Finicelli, G. F., Confuorto, P., Carratù, M. T., et al., 2016. Multivariate Statistical Approach vs. Deterministic Physically Based Model for Landslide Susceptibility Assessment. Rendiconti Online Della Società Geologica Italiana, 41: 151-154. https://doi.org/10.3301/rol.2016.116
|
Guo, Z. Z., Yin, K. L., Liu, Q. L., et al., 2020. Rainfall Warning of Creeping Landslide in Yunyang County of Three Gorges Reservoir Region Based on Displacement Ratio Model. Earth Science, 45(2): 672-684(in Chinese with English abstract).
|
Harilal, G. T., Madhu, D., Ramesh, M. V., et al., 2019. Towards Establishing Rainfall Thresholds for a Real⁃Time Landslide Early Warning System in Sikkim, India. Landslides, 16(12): 2395-2408. https://doi.org/10.1007/s10346⁃019⁃01244⁃1
|
Hong, H. Y., Liu, J. Z., Zhu, A. X., 2020. Modeling Landslide Susceptibility Using LogitBoost Alternating Decision Trees and Forest by Penalizing Attributes with the Bagging Ensemble. Science of the Total Environment, 718: 137231. https://doi.org/10.1016/j.scitotenv.2020.137231
|
Hong, H. Y., Pourghasemi, H. R., Pourtaghi, Z. S., 2016. Landslide Susceptibility Assessment in Lianhua County (China): A Comparison between a Random Forest Data Mining Technique and Bivariate and Multivariate Statistical Models. Geomorphology, 259: 105-118. https://doi.org/10.1016/j.geomorph.2016.02.012
|
Hong, M., Kim, J., Jeong, S., 2018. Rainfall Intensity⁃Duration Thresholds for Landslide Prediction in South Korea by Considering the Effects of Antecedent Rainfall. Landslides, 15(3): 523-534. https://doi.org/10.1007/s10346⁃017⁃0892⁃x
|
Huang, F. M., Chen, J. W., Du, Z., et al., 2020a. Landslide Susceptibility Prediction Considering Regional Soil Erosion Based on Machine⁃Learning Models. ISPRS International Journal of Geo⁃Information, 9(6): 377. https://doi.org/10.3390/ijgi9060377
|
Huang, F. M., Zhang, J., Zhou, C. B., et al., 2020b. A Deep Learning Algorithm Using a Fully Connected Sparse Autoencoder Neural Network for Landslide Susceptibility Prediction. Landslides, 17(1): 217-229. https://doi.org/10.1007/s10346⁃019⁃01274⁃9
|
Huang, F. M., Ye, Z., Yao, C., et al., 2020. Uncertainties of Landslide Susceptibility Prediction: Different Attribute Interval Divisions of Environmental Factors and Different Data⁃Based Models. Earth Science, 45(12): 4535-4549(in Chinese with English abstract).
|
Huang, F. M., Yin, K. L., Jiang, S. H., et al., 2018. Landslide Susceptibility Assessment Based on Clustering Analysis and Support Vector Machine. Chinese Journal of Rock Mechanics and Engineering, 37(1): 156-167(in Chinese with English abstract).
|
Khosravi, K., Pham, B. T., Chapi, K., et al., 2018. A Comparative Assessment of Decision Trees Algorithms for Flash Flood Susceptibility Modeling at Haraz Watershed, Northern Iran. Science of the Total Environment, 627: 744-755. https://doi.org/10.1016/j.scitotenv.2018.01.266
|
Lee, S., Won, J. S., Jeon, S. W., et al., 2015. Spatial Landslide Hazard Prediction Using Rainfall Probability and a Logistic Regression Model. Mathematical Geosciences, 47(5): 565-589. https://doi.org/10.1007/s11004⁃014⁃9560⁃z
|
Lepore, C., Arnone, E., Noto, L. V., et al., 2013. Physically Based Modeling of Rainfall⁃Triggered Landslides: A Case Study in the Luquillo Forest, Puerto Rico. Hydrology and Earth System Sciences, 17(9): 3371-3387. https://doi.org/10.5194/hess⁃17⁃3371⁃2013
|
Liu, J., Li, S. L., Chen, T., 2018. Landslide Susceptibility Assesment Based on Optimized Random Forest Model. Geomatics and Information Science of Wuhan University, 43(7): 1085-1091(in Chinese with English abstract).
|
Liu, L., Yin, K. L., Wang, J. J., et al., 2016. Dynamic Evaluation of Regional Landslide Hazard Due to Rainfall: A Case Study in Wanzhou Central District, Three Gorges Reservoir. Chinese Journal of Rock Mechanics and Engineering, 35(3): 558-569(in Chinese with English abstract).
|
Ma, T. H., Li, C. J., Lu, Z. M., et al., 2014. An Effective Antecedent Precipitation Model Derived from the Power⁃Law Relationship between Landslide Occurrence and Rainfall Level. Geomorphology, 216: 187-192. https://doi.org/10.1016/j.geomorph.2014.03.033
|
Mathew, J., Babu, D. G., Kundu, S., et al., 2014. Integrating Intensity–Duration⁃Based Rainfall Threshold and Antecedent Rainfall⁃Based Probability Estimate towards Generating Early Warning for Rainfall⁃Induced Landslides in Parts of the Garhwal Himalaya, India. Landslides, 11(4): 575-588. https://doi.org/10.1007/s10346⁃013⁃0408⁃2
|
Nsengiyumva, J. B., Luo, G. P., Amanambu, A. C., et al., 2019. Comparing Probabilistic and Statistical Methods in Landslide Susceptibility Modeling in Rwanda/Centre⁃Eastern Africa. Science of the Total Environment, 659: 1457-1472. https://doi.org/10.1016/j.scitotenv.2018.12.248
|
Peruccacci, S., Brunetti, M. T., Gariano, S. L., et al., 2017. Rainfall Thresholds for Possible Landslide Occurrence in Italy. Geomorphology, 290: 39-57. https://doi.org/10.1016/j.geomorph.2017.03.031
|
Peruccacci, S., Brunetti, M. T., Luciani, S., et al., 2012. Lithological and Seasonal Control on Rainfall Thresholds for the Possible Initiation of Landslides in Central Italy. Geomorphology, 139-140: 79-90. https://doi.org/10.1016/j.geomorph.2011.10.005
|
Pourghasemi, H. R., Pradhan, B., Gokceoglu, C., 2012. Application of Fuzzy Logic and Analytical Hierarchy Process (AHP) to Landslide Susceptibility Mapping at Haraz Watershed, Iran. Natural Hazards, 63(2): 965-996. https://doi.org/10.1007/s11069⁃012⁃0217⁃2
|
Pradhan, A. M. S., Lee, S. R., Kim, Y. T., 2019. A Shallow Slide Prediction Model Combining Rainfall Threshold Warnings and Shallow Slide Susceptibility in Busan, Korea. Landslides, 16(3): 647-659. https://doi.org/10.1007/s10346⁃018⁃1112⁃z
|
Rosi, A., Peternel, T., Jemec⁃Auflič, M., et al., 2016. Rainfall Thresholds for Rainfall⁃Induced Landslides in Slovenia. Landslides, 13(6): 1571-1577. https://doi.org/10.1007/s10346⁃016⁃0733⁃3
|
Rossi, M., Luciani, S., Valigi, D., et al., 2017. Statistical Approaches for the Definition of Landslide Rainfall Thresholds and Their Uncertainty Using Rain Gauge and Satellite Data. Geomorphology, 285: 16-27. https://doi.org/10.1016/j.geomorph.2017.02.001
|
Salciarini, D., Fanelli, G., Tamagnini, C., 2017. A Probabilistic Model for Rainfall⁃Induced Shallow Landslide Prediction at the Regional Scale. Landslides, 14(5): 1731-1746. https://doi.org/10.1007/s10346⁃017⁃0812⁃0
|
Segoni, S., Lagomarsino, D., Fanti, R., et al., 2015. Integration of Rainfall Thresholds and Susceptibility Maps in the Emilia Romagna (Italy) Regional⁃Scale Landslide Warning System. Landslides, 12(4): 773-785. https://doi.org/10.1007/s10346⁃014⁃0502⁃0
|
Segoni, S., Piciullo, L., Gariano, S. L., 2018. A Review of the Recent Literature on Rainfall Thresholds for Landslide Occurrence. Landslides, 15(8): 1483-1501. https://doi.org/10.1007/s10346⁃018⁃0966⁃4
|
Sheng, Y. F., Li, Y. Y., Xu, Y., et al., 2019. Prediction of Rainfall⁃Type Landslides Based on Effective Rainfall Intensity and Logistic Regression. Hydrogeology & Engineering Geology, 46(1): 156-162, 172(in Chinese with English abstract).
|
Wu, X. L., Yang, J. Y., Niu, R. Q., 2020. A Landslide Susceptibility Assessment Method Using SMOTE and Convolutional Neural Network. Geomatics and Information Science of Wuhan University, 45(8): 1223-1232(in Chinese with English abstract).
|
Wu, Y. M., Lan, H. X., Gao, X., et al., 2015. A Simplified Physically Based Coupled Rainfall Threshold Model for Triggering Landslides. Engineering Geology, 195: 63-69. https://doi.org/10.1016/j.enggeo.2015.05.022
|
Wu, Y. P., Zhang, Q. X., Tang, H. M., et al., 2014. Landslide Hazard Warning Based on Effective Rainfall Intensity. Earth Science, 39(7): 889-895(in Chinese with English abstract).
|
Yang, H. J., Wei, F. Q., Ma, Z. F., et al., 2020. Rainfall Threshold for Landslide Activity in Dazhou, Southwest China. Landslides, 17(1): 61-77. https://doi.org/10.1007/s10346⁃019⁃01270⁃z
|
陈涛, 钟子颖, 牛瑞卿, 等, 2020. 利用深度信念网络进行滑坡易发性评价. 武汉大学学报(信息科学版), 45(11): 1809-1817. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202011018.htm
|
郭子正, 殷坤龙, 刘庆丽, 等, 2020. 基于位移比模型的三峡库区云阳县域内蠕变型滑坡降雨预警. 地球科学, 45(2): 672-684. doi: 10.3799/dqkx.2019.005
|
黄发明, 叶舟, 姚池, 等, 2020. 滑坡易发性预测不确定性: 环境因子不同属性区间划分和不同数据驱动模型的影响. 地球科学, 45(12): 4535-4549. doi: 10.3799/dqkx.2020.247
|
黄发明, 殷坤龙, 蒋水华, 等, 2018. 基于聚类分析和支持向量机的滑坡易发性评价. 岩石力学与工程学报, 37(1): 156-167. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201801016.htm
|
刘坚, 李树林, 陈涛, 2018. 基于优化随机森林模型的滑坡易发性评价. 武汉大学学报(信息科学版), 43(7): 1085-1091. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201807017.htm
|
刘磊, 殷坤龙, 王佳佳, 等, 2016. 降雨影响下的区域滑坡危险性动态评价研究: 以三峡库区万州主城区为例. 岩石力学与工程学报, 35(3): 558-569. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201603013.htm
|
盛逸凡, 李远耀, 徐勇, 等, 2019. 基于有效降雨强度和逻辑回归的降雨型滑坡预测模型. 水文地质工程地质, 46 (1): 156-162, 172. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201901021.htm
|
武雪玲, 杨经宇, 牛瑞卿, 2020. 一种结合SMOTE和卷积神经网络的滑坡易发性评价方法. 武汉大学学报(信息科学版), 45(8): 1223-1232. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202008013.htm
|
吴益平, 张秋霞, 唐辉明, 等, 2014. 基于有效降雨强度的滑坡灾害危险性预警. 地球科学, 39(7): 889-895. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201407011.htm
|