• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 9
    Sep.  2023
    Turn off MathJax
    Article Contents
    Zhang Jianqiao, Dou Zhi, Zhang Xueyi, 2023. Effect of Coefficient of Variation of Particle Size of Porous Media on Contaminant Transport. Earth Science, 48(9): 3444-3453. doi: 10.3799/dqkx.2021.166
    Citation: Zhang Jianqiao, Dou Zhi, Zhang Xueyi, 2023. Effect of Coefficient of Variation of Particle Size of Porous Media on Contaminant Transport. Earth Science, 48(9): 3444-3453. doi: 10.3799/dqkx.2021.166

    Effect of Coefficient of Variation of Particle Size of Porous Media on Contaminant Transport

    doi: 10.3799/dqkx.2021.166
    • Received Date: 2021-07-15
      Available Online: 2023-10-07
    • Publish Date: 2023-09-25
    • The contaminant transport in porous media is crucial for a comprehensive understanding of groundwater contamination. However, there are still inadequacies in the research concerning the effect of the coefficient of variation (COV) of particle size of porous media on the contaminant transport in the internal microscopic pore structure. A method is proposed to construct a geometric model of porous media with different coefficients of variation and consistent porosity based on a random algorithm. The groundwater flow field and contaminant concentration field in porous media are obtained by coupling the Navier-Stokes equation and the advection-diffusion equation. The uniformity of flow velocity distribution is evaluated quantitatively by introducing Christiansen uniformity coefficient. Based on the MIM (mobile and immobile) model and the ADE (advection-dispersion equation) model, the characteristics of breakthrough curves are analyzed. The results show that as the COV of particle size increases, the non-uniformity of the flow velocity distribution is enhanced. The COV of particle size is positively correlated with the ratio of solute mobile domain $ \beta $ and the dimensionless mass transfer rate $ {\alpha }^{*} $; the goodness-of-fitting of MIM model is better than that of ADE model, and as the COV increases, the fitting global error $ {E}_{\mathrm{i}} $ of ADE model gradually increases. Overall, the COV of particle size controls the size of mobile and immobile domain and solute exchange intensity between two domains, resulting in the non-Fickian behavior of solute transport in porous media. This also causes the error of ADE model gradually increases. MIM model has better applicability for the porous media with larger COV.

       

    • loading
    • Bijeljic, B., Raeini, A., Mostaghimi, P., et al., 2013. Predictions of Non⁃Fickian Solute Transport in Different Classes of Porous Media Using Direct Simulation on Pore–Scale Images. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 87(1): 013011. https://doi.org/10.1103/PhysRevE.87.013011
      Cheng, Z., Xu, H. X., Sun, Y. Y., et al., 2017. Effect of Salinity on DNAPL Migration and Distribution in Saturated Porous Media. Hydrogeology & Engineering Geology, 44(4): 129-136 (in Chinese with English abstract).
      Dou, Z., Sleep, B., Zhan, H. B., et al., 2019a. Multiscale Roughness Influence on Conservative Solute Transport in Self–Affine Fractures. International Journal of Heat and Mass Transfer, 133: 606-618. https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.141
      Dou, Z., Zhang, X. Y., Chen, Z., et al., 2019b. Effects of Cemented Porous Media on Temporal Mixing Behavior of Conservative Solute Transport. Water, 11(6): 1204. https://doi.org/10.3390/w11061204
      Gao, G. Y., Zhan, H. B., Feng, S. Y., et al., 2010. A New Mobile–Immobile Model for Reactive Solute Transport with Scale–Dependent Dispersion. Water Resources Research, 46(8): W08533. https://doi.org/10.1029/2009WR008707
      Goltz, M. N., Roberts, P. V., 1986. Three⁃Dimensional Solutions for Solute Transport in an Infinite Medium with Mobile and Immobile Zones. Water Resources Research, 22(7): 1139-1148. https://doi.org/10.1029/WR022i007p01139
      Harvey, C., Gorelick, S. M., 2000. Rate–Limited Mass Transfer or Macrodispersion: Which Dominates Plume Evolution at the Macrodispersion Experiment (MADE) Site? Water Resources Research, 36(3): 637-650. https://doi.org/10.1029/1999WR900247
      Icardi, M., Boccardo, G., Marchisio, D. L., et al., 2014. Pore–Scale Simulation of Fluid Flow and Solute Dispersion in Three⁃Dimensional Porous Media. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 90(1): 013032. https://doi.org/10.1103/PhysRevE.90.013032
      Jiang, L. Q., Sun, R. L., Liang, X., 2021. Predicting Groundwater Flow and Transport in Heterogeneous Aquifer Sandbox Using Different Parameter Estimation Methods. Earth Science, 46(11): 4150-4160 (in Chinese with English abstract).
      Li, H. W., Bai, B., Wang, M. S., et al., 2015. Contaminant Transport under Seeping Condition in Porous Media with a Contaminant Source of Cyclically Variable Concentration. Rock and Soil Mechanics, 36(5): 1306-1312 (in Chinese with English abstract).
      Li, T., Jin, S. P., Huang, S. Y., et al., 2013. Evaluation Indices of Flow Velocity Distribution Uniformity: Comparison and Application. Thermal Power Generation, 42(11): 60-63, 92 (in Chinese with English abstract).
      Li, X., Su, S. L., Wen, Z., Xu, G. Q., 2022. Numerical Analysis of Estimating Groundwater Velocity through Single⁃Well Push⁃Pull Test. Earth Science, 47(2): 633-641 (in Chinese with English abstract).
      Li, Y. M., Wen, Z., 2020. Impacts of Non⁃Darcian Flow in the Fracture on Flow Field and Solute Plumes in a Fracture⁃Aquifer System. Earth Science, 45(2): 693-700 (in Chinese with English abstract).
      van Genuchten, M. T., Wierenga, P. J., 1976. Mass Transfer Studies in Sorbing Porous Media I. Analytical Solutions. Soil Science Society of America Journal, 40(4): 473-480. https://doi.org/10.2136/sssaj1976.03615995004000040011x
      Ye, Y., Zhang, Y., Cai, F. M., et al., 2021. Fluid Deformation and Solute Transport in Macroscopic Anisotropic Porous Media. Advances in Water Science, 32(6): 903-910 (in Chinese with English abstract).
      Yu, Q. C., Zhu, X. B., Wu, J. C., et al., 2017. Experimental Research of Impact of the Immobile Domain on the Solute Transport. Hydrogeology & Engineering Geology, 44(4): 160-164, 172 (in Chinese with English abstract).
      Zhang, X. Y., Dou, Z., 2018. Influence of Microscopic Pore Structure of Clay on Soluble Contaminant Transport. Hydrogeology & Engineering Geology, 45(4): 157-164 (in Chinese with English abstract).
      程洲, 徐红霞, 孙媛媛, 等, 2017. 盐度对多孔介质中DNAPL运移和分布的影响. 水文地质工程地质, 44(4): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201704020.htm
      蒋立群, 孙蓉琳, 梁杏, 2021. 含水层非均质性不同刻画方法对地下水流和溶质运移预测的影响. 地球科学, 46(11): 4150-4160. doi: 10.3799/dqkx.2020.268
      李华伟, 白冰, 王梦恕, 等, 2015. 渗透作用下多孔介质中循环浓度污染物的迁移过程研究. 岩土力学, 36(5): 1306-1312. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201505010.htm
      李坦, 靳世平, 黄素逸, 等, 2013. 流场速度分布均匀性评价指标比较与应用研究. 热力发电, 42(11): 60-63, 92. https://www.cnki.com.cn/Article/CJFDTOTAL-RLFD201311013.htm
      李旭, 苏世林, 文章, 许光泉, 2022. 单井注抽试验测算地下水流速的数值分析. 地球科学, 47(2): 633-641. doi: 10.3799/dqkx.2021.102
      李一鸣, 文章, 2020. 非达西裂隙流对渗透性基岩中流场及溶质羽的影响. 地球科学, 45(2): 693-700. doi: 10.3799/dqkx.2018.345
      叶逾, 张宇, 蔡芳敏, 等, 2021. 宏观各向异性多孔介质中流体变形及溶质运移. 水科学进展, 32(6): 903-910. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ202106009.htm
      余期冲, 祝晓彬, 吴吉春, 等, 2017. 死端孔隙对溶质运移影响的实验研究. 水文地质工程地质, 44(4): 160-164, 172. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201704024.htm
      张学羿, 窦智, 2018. 黏土微观孔隙结构对可溶性污染物运移的影响. 水文地质工程地质, 45(4): 157-164. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201804023.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)  / Tables(3)

      Article views (395) PDF downloads(28) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return