• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 10
    Oct.  2023
    Turn off MathJax
    Article Contents
    Fu Si, Li Chaoling, Zhang Haiyan, Liu Chang, Li Fengdan, 2023. Geological Body Recognition Based on Multi-Modal Feature Fusion. Earth Science, 48(10): 3743-3752. doi: 10.3799/dqkx.2021.176
    Citation: Fu Si, Li Chaoling, Zhang Haiyan, Liu Chang, Li Fengdan, 2023. Geological Body Recognition Based on Multi-Modal Feature Fusion. Earth Science, 48(10): 3743-3752. doi: 10.3799/dqkx.2021.176

    Geological Body Recognition Based on Multi-Modal Feature Fusion

    doi: 10.3799/dqkx.2021.176
    • Received Date: 2021-07-02
      Available Online: 2023-10-31
    • Publish Date: 2023-10-25
    • Applying deep learning technology to geological mapping to mine the deep-level in formation of different modal data, so as to achieve more accurate geological mapping. Considering the geophysical and geochemical data and remote sensing image data, in this paper it proposes a geological body recognition method based on multi-modal feature fusion. Firstly, Using deep neural network and convolution neural network to extract the features of the two different modal data and then performs feature splicing to obtain multi-modal features, finally, the fully connected neural network is used for feature fusion to complete the geological body classification. The cross-validation results show that the proposed multi-modal feature fusion method has obvious advantages compared with the deep learning methods using geophysical and geochemical data or remote sensing image data along, and the classification accuracy rate is increased by 14.08% and 2.79%. This result proves that this method can realize more accurate geological body identification, and then better assist geological mapping.

       

    • loading
    • Anderson, T. I., Vega, B., Kovscek, A. R., 2020. Multimodal Imaging and Machine Learning to Enhance Microscope Images of Shale. Computers & Geosciences, 145: 104593-104606. https://doi.org/10.1016/j.cageo.2020.104593
      Arabi Aliabad, F., Shojaei, S., Zare, M., et al., 2019. Assessment of the Fuzzy ARTMAP Neural Network Method Performance in Geological Mapping Using Satellite Images and Boolean Logic. International Journal of Environmental Science and Technology, 16(7): 3829-3838. https://doi.org/10.1007/s13762-018-1795-7
      Bhandari, D., Paul, S., Narayan, A., 2019. Multimodal Data Fusion and Prediction of Emotional Dimensions Using Deep Neural Network. Computational Intelligence: Theories, Applications and Future Directions, 799(2): 215-228. https://doi.org/10.1007/978-981-13-1135-2_17
      Brandmeier, M., Chen, Y., 2019. Lithological Classification Using Multi-Sensor Data and Convolutional Neural Networks. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLⅡ-2/W16: 55-59. https://doi.org/10.5194/isprs-archives-xlii-2-w16-55-2019
      Carter, A., Clift, P. D., 2008. Was the Indosinian Orogeny a Triassic Mountain Building or a Thermotectonic Reactivation Event? Comptes Rendus Geoscience, 340(2-3): 83-93. https://doi.org/10.1016/j.crte.2007.08.011
      Cheng, G. J., Guo, W. H., 2017. Rock Images Classification by Using Deep Convolution Neural Network. Journal of Physics: Conference Series, 887(1): 012089. https://doi.org/10.1088/1742-6596/887/1/012089
      Gao, S., 2020. A Review of Recent Researches and Reflections on Geospatial Artificial Intelligence. Geomatics and Information Science of Wuhan University, 45(12): 1865-1874(in Chinese with English abstract).
      He, J., Zhang, C.Q., Li, X.Z., et al., 2020. Survey of Research on Multimodal Fusion Technology for Deep Learning. Computer Engineering, 46(5): 1-11(in Chinese with English abstract).
      Krizhevsky, A., Hinton, G., 2009. Learning Multiple Layers of Features from Tiny Images. Handbook of Systemic Autoimmune Diseases, 1(4).
      Krizhevsky, A., Sutskever, I., Hinton, G. E., 2012. ImageNet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems, 25(2): 1097-1105. https://doi.org/10.1145/3065386
      LeCun, Y., Bottou, L., Bengio, Y., et al., 1998. Gradient-Based Learning Applied to Document Recognition. Proceedings of the IEEE, 86(11): 2278-2324. https://doi.org/10.1109/5.726791
      Li, C. W., Zhang, R. S., Zhang, Z. T., et al., 2018. Tectonic Interpretation and Analysis Based on Multisource Remote Sensing Data: A Case Study of Jitai River in Chayi, Tibet. Remote Sensing Technology and Application, 33(4): 657-665(in Chinese with English abstract).
      Liu, J.W., Ding, X.H., Luo, X.L., 2020. Survey of Multimodal Deep Learning. Application Research of Computers, 37(6): 1601-1614(in Chinese with English abstract).
      Maimaitijiang, M., Sagan, V., Sidike, P., et al., 2019. Soybean Yield Prediction from UAV Using Multimodal Data Fusion and Deep Learning. Remote Sensing of Environment, 237: 111599. https://doi.org/10.1016/j.rse.2019.111599
      Pires de Lima, R., Duarte, D., Nicholson, C., et al., 2020. Petrographic Microfacies Classification with Deep Convolutional Neural Networks. Computers & Geosciences, 142: 104481. https://doi.org/10.1016/j.cageo.2020.104481
      Pour, A. B., Hashim, M., Makoundi, C., et al., 2016. Structural Mapping of the Bentong-Raub Suture Zone Using PALSAR Remote Sensing Data, Peninsular Malaysia: Implications for Sediment-Hosted/Orogenic Gold Mineral Systems Exploration. Resource Geology, 66(4): 368-385. https://doi.org/10.1111/rge.12105
      Ran, X. J., Xue, L. F., Zhang, Y. Y., et al., 2019. Rock Classification from Field Image Patches Analyzed Using a Deep Convolutional Neural Network. Mathematics, 7(8): 755-770. https://doi.org/10.3390/math7080755
      Russakovsky, O., Deng, J., Su, H., et al., 2015. ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision, 115(3): 211-252. https://doi.org/10.1007/s11263-015-0816-y
      Simonyan, K., Zisserman, A., 2015. Very Deep Convolutional Networks for Large-Scale Image Recognition". : arXiv: 1409.1556. https://arxiv.org/abs/1409.1556
      Singer, D. A., 2021. How Deep Learning Networks could be Designed to Locate Mineral Deposits. Journal of Earth Science, 32(2): 288-292. https://doi.org/10.1007/s12583-020-1399-2
      Su, Y. H., Fan, K., Bach, N., et al., 2019. Unsupervised Multi-Modal Neural Machine Translation. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 15-20, 2019, Long Beach, CA, USA. IEEE, 10474-10483. https://doi.org/10.1109/CVPR.2019.01073
      Tu, K., Wen, Q., Chen, H., et al., 2019. New Method of Structural Interpretation in Meadow Covering Based on GaoFen-3 Pol-SAR Images. Journal of Remote Sensing, 23(2): 243-251(in Chinese with English abstract).
      Wang, X., Huang, Q. Y., Celikyilmaz, A., et al., 2019. Reinforced Cross-Modal Matching and Self-Supervised Imitation Learning for Vision-Language Navigation. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 15-20, 2019, Long Beach, CA, USA. IEEE, 6622-6631. https://doi.org/10.1109/CVPR.2019.00679
      Xu, Y. Y., Li, Z. X., Xie, Z., et al., 2020. Prediction of Copper Mineralization Based on Semi-Supervised Neural Network. Earth Science, (12): 4563-4573(in Chinese with English abstract).
      Zhang, Y., Song, B., Du, X. J., et al., 2018. Vehicle Tracking Using Surveillance with Multimodal Data Fusion. IEEE Transactions on Intelligent Transportation Systems, 19(7): 2353-2361. https://doi.org/10.1109/TITS.2017.2787101
      Zheng, M. Y., Tie, Y., Qi, L., et al., 2019. Dynamic Gesture Recognition Based on the Multimodality Fusion Temporal Segment Networks. 2019 8th International Symposium on Next Generation Electronics (ISNE). October 9-10, 2019, Zhengzhou, China. IEEE, 1-3. https://doi.org/10.1109/ISNE.2019.8896438
      Zhou, T. X., Su, R., Guo, Y., et al., 2020. A Multi-Modality Fusion Network Based on Attention Mechanism for Brain Tumor Segmentation. 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI). April 3-7, 2020, Iowa City, IA, USA. IEEE, 377-380. https://doi.org/10.1109/ISBI45749.2020.9098392
      Zuo, R.G., 2021. Data Science-Based Theory and Method of Quantitative Prediction of Mineral Resources. Earth Science Frontiers, 28(3): 49-55(in Chinese with English abstract).
      Zuo, R. G., Peng, Y., Li, T., et al., 2021. Challenges of Geological Prospecting Big Data Mining and Integration Using Deep Learning Algorithms. Earth Science, 46(1): 350-358(in Chinese with English abstract).
      高松, 2020. 地理空间人工智能的近期研究总结与思考. 武汉大学学报(信息科学版), 45(12): 1865-1874. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202012005.htm
      何俊, 张彩庆, 李小珍, 等, 2020. 面向深度学习的多模态融合技术研究综述. 计算机工程, 46(5): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC202005001.htm
      李晨伟, 张瑞丝, 张竹桐, 等, 2018. 基于多源遥感数据的构造解译与分析: 以西藏察隅吉太曲流域为例. 遥感技术与应用, 33(4): 657-665. https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS201804010.htm
      刘建伟, 丁熙浩, 罗雄麟, 2020. 多模态深度学习综述. 计算机应用研究, 37(6): 1601-1614. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ202006001.htm
      涂宽, 文强, 谌华, 等, 2019. GF-3全极化影像在地表浅覆盖区进行地质构造解译的新方法. 遥感学报, 23(2): 243-251. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201902006.htm
      徐永洋, 李孜轩, 谢忠, 等, 2020. 基于半监督神经网络的铜矿预测方法. 地球科学, 45(12): 4563-4573. doi: 10.3799/dqkx.2020.297
      左仁广, 2021. 基于数据科学的矿产资源定量预测的理论与方法探索. 地学前缘, 28(3): 49-55. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202103005.htm
      左仁广, 彭勇, 李童, 等, 2021. 基于深度学习的地质找矿大数据挖掘与集成的挑战. 地球科学, 46(1): 350-358. doi: 10.3799/dqkx.2020.111
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)  / Tables(9)

      Article views (950) PDF downloads(99) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return