Citation: | Zhu Guangyou, Li Jingfei, Zhang Zhiyao, 2025. Origin of Deep Oil and Gas Phase State Diversity and Evaluation of Secondary Geochemical Intensity: A Case Study of Marine Oil and Gas in Tarim Basin. Earth Science, 50(6): 2163-2178. doi: 10.3799/dqkx.2021.177 |
Brooks, J., Welte, D., 1984. Advances in Petroleum Geochemistry: Vol. 1. Academic Press, London.
|
Claypool, G., Mancini, E., 1989. Geochemical Relationships of Petroleum in Mesozoic Reservoirs to Carbonate Source Rocks of Jurassic Smackover Formation, South West Alabama. American Association of Petroleum Geologists Bulletin, 73: 904-924.
|
Connan, J. 1984. Biodegradation of Crude Oils in Reservoirs. In: Brooks, J., Welte, D. H., eds., Advances in Petroleum Geochemistry. Academic Press, London, 298-335.
|
Dahl, J. E., Moldowan, J. M., Peters, K. E., et al., 1999. Diamondoid Hydrocarbons as Indicators of Natural Oil Cracking. Nature, 399: 54-57. https://doi.org/10.1038/19953
|
Dzou, L. I. P., Hughes, W. B., 1993. Geochemistry of Oils and Condensates, K Field, Offshore Taiwan: A Case Study in Migration Fractionation. Organic Geochemistry, 20(4): 437-462. https://doi.org/10.1016/0146-6380(93)90092-p
|
Grice, K., Alexander, R., Kagi, R. I., 2000. Diamondoid Hydrocarbon Ratios as Indicators of Biodegradation in Australian Crude Oils. Organic Geochemistry, 31(1): 67-73. https://doi.org/10.1016/S0146-6380(99)00137-0
|
Hanin, S., Adam, P., Kowalewski, I., et al., 2002. Bridgehead Alkylated 2-Thia-Adamantanes: Novel Markers for Sulfurisation Processes Occurring under High Thermal Stress in Deep Petroleum Reservoirs. Chemical Communications, (16): 1750-1751. https://doi.org/10.1039/b203551k
|
Hill, R. J., Tang, Y. C., Kaplan, I. R., 2003. Insights into Oil Cracking Based on Laboratory Experiments. Organic Geochemistry, 34(12): 1651-1672. https://doi.org/10.1016/S0146-6380(03)00173-6
|
Huang, H. P., Zhang, S. C., Su, A. G., 2001. Geochemical Processes in Petroleum Migration and Accumulation. Experimental Petroleum Geology, 23(3): 278-284(in Chinese with English abstract).
|
Jones, D. M., Head, I. M., Gray, N. D., et al., 2007. Crude-Oil Biodegradation via Methanogenesis in Subsurface Petroleum Reservoirs. Nature, 451: 176-180. https://doi.org/10.1038/nature06484
|
Kissin, Y. V., 1987. Catagenesis and Composition of Petroleum: Origin of n-Alkanes and Isoalkanes in Petroleum Crudes. Geochimica et Cosmochimica Acta, 51(9): 2445-2457. https://doi.org/10.1016/0016-7037(87)90296-1
|
Larter, S., Wilhelms, A., Head, I., et al., 2003. The Controls on the Composition of Biodegraded Oils in the Deep Subsurface: Part 1: biodegradation Rates in Petroleum Reservoirs. Organic Geochemistry, 34(4): 601-613. https://doi.org/10.1016/s0146-6380(02)00240-1
|
Li, S. M., Shi, Q., Pang, X. Q., et al., 2012. Origin of the Unusually High Dibenzothiophene Oils in Tazhong-4 Oilfield of Tarim Basin and Its Implication in Deep Petroleum Exploration. Organic Geochemistry, 48: 56-80. https://doi.org/10.1016/j.orggeochem.2012.04.008
|
Li, X., Zhu, G. Y., Zhang, Z. Y., 2024. Genesis of Ultra-Deep Dolostone and Controlling Factors of Large-Scale Reservoir: A Case Study of the Sinian Dengying Formation and the Cambrian Longwangmiao Formation in the Sichuan Basin. Science China: Earth Sciences, 67(7): 2352-2382. https://doi.org/10.1007/s11430-023-1301-x
|
Lin, L. H., Michael, G. E., Kovachev, G., et al., 1989. Biodegradation of TarSand Bitumens from the Ardmore and Anadarko Basins, Carter County, Oklahoma. Organic Geochemistry, 14(5): 511-523. https://doi.org/10.1016/0146-6380(89)90031-4
|
Losh, S., Cathles, L., Meulbroek, P., 2002. Gas Washing of Oil along a Regional Transect, Offshore Louisiana. Organic Geochemistry, 33(6): 655-663. https://doi.org/10.1016/S0146-6380(02)00025-6
|
Ma, A. L., Jin, Z. J., Li, H. L., et al., 2020. Secondary Alteration and Preservation of Ultra-Deep Ordovician Oil Reservoirs of North Shuntuoguole Area of Tarim Basin, NW China. Earth Science, 45(5): 1737-1753(in Chinese with English abstract).
|
Miao, Q. Y., Xu, C. G., Hao, F., et al., 2024. Hydrocarbon Charging and Accumulation Process of the Large Bozhong19-6 Condensate Gas Reservoirs in the Southwestern Bozhong Sub-Basin, Bohai Bay Basin, China. Journal of Earth Science, 35(2): 613-630. https://doi.org/10.1007/s12583-021-1457-4
|
Seifert, W. K., Moldowan, M. J., 1978. Applications of Steranes, Terpanes and Monoaromatics to the Maturation, Migration and Source of Crude Oils. Geochimica et Cosmochimica Acta, 42(1): 77-95. https://doi.org/10.1016/0016-7037(78)90219-3
|
Seifert, W. K., Michael Moldowan, J., 1979. The Effect of Biodegradation on Steranes and Terpanes in Crude Oils. Geochimica et Cosmochimica Acta, 43(1): 111-126. https://doi.org/10.1016/0016-7037(79)90051-6
|
Seifert, W. K., Michael Moldowan, J., Demaison, G. J., 1984. Source Correlation of Biodegraded Oils. Organic Geochemistry, 6: 633-643. https://doi.org/10.1016/0146-6380(84)90085-8
|
Shang, P., Chen, H. H., Hu, S. Z., et al., 2020. Geochemical Characteristics of Crude Oil and Hydrocarbon Accumulation in the Ordovician of Yuqixi Area, Tarim Basin. Earth Science, 45(3): 1013-1026(in Chinese with English abstract).
|
Sun, C. H., Zhu, G. Y., Zheng, D. M., et al., 2016. Characteristics and Controlling Factors of Fracture-Cavity Carbonate Reservoirs in the Halahatang Area, Tarim Basin. Bulletin of Mineralogy, Petrology and Geochemistry, 35(5): 1028-1036 (in Chinese with English abstract).
|
Thompson, K. F. M., 1988. Gas-Condensate Migration and Oil Fractionation in Deltaic Systems. Marine and Petroleum Geology, 5(3): 237-246. https://doi.org/10.1016/0264-8172(88)90004-9
|
Wang, Y. P., Zhang, S. C., Wang, F. Y., et al., 2006. Thermal Cracking History by Laboratory Kinetic Simulation of Paleozoic Oil in Eastern Tarim Basin, NW China, Implications for the Occurrence of Residual Oil Reservoirs. Organic Geochemistry, 37(12): 1803-1815. https://doi.org/10.1016/j.orggeochem.2006.07.010
|
Wei, Z. B., Mankiewicz, P., Walters, C., et al., 2011. Natural Occurrence of Higher Thiadiamondoids and Diamondoidthiols in a Deep Petroleum Reservoir in the Mobile Bay Gas Field. Organic Geochemistry, 42(2): 121-133. https://doi.org/10.1016/j.orggeochem.2010.12.002
|
Wei, Z. B., Moldowan, J. M., Zhang, S. C., et al., 2007. Diamondoid Hydrocarbons as a Molecular Proxy for Thermal Maturity and Oil cracking: Geochemical Models from Hydrous Pyrolysis. Organic Geochemistry, 38(2): 227-249. https://doi.org/10.1016/j.orggeochem.2006.09.011
|
Williams, J. A., Bjorøy, M., Dolcater, D. L., et al., 1986. Biodegradation in South Texas Eocene Oils—Effects on Aromatics and Biomarkers. Organic Geochemistry, 10(1-3): 451-461. https://doi.org/10.1016/0146-6380(86)90045-8
|
Yan, L., Yang, M., Zhang, J. L., et al., 2020. Distribution of Cambrian Source Rocks and Evaluation and Optimization of Favorable Zones in East Tarim Basin. Natural Gas Geoscience, 31(5): 667-674(in Chinese with English abstract).
|
Yang, C. P., Geng, A. S., Liao, Z. W., et al., 2009. Quantitative Evaluation of Gas Invasion in Tazhong Area of Tarim Basin. Science in China (Series D), 39(1): 51-60(in Chinese).
|
Zhang, D. J., Huang, D. F., Li, J. C., 1988. Biodegraded Sequence of Karamay Oils and Semi-Quantitative Estimation of Their Biodegraded Degrees in Junggar Basin, China. Organic Geochemistry, 13(1-3): 295-302. https://doi.org/10.1016/0146-6380(88)90048-4
|
Zhang, S. C., Liang, D. G., Zhang, B. M., et al., 2004. Formation of Marine Oil and Gas in Tarim Basin. In: Jia, C. Z., ed., Tarim Basin Petroleum Geology and Exploration Series 7. Petroleum Industry Publishing House, Beijing, 299-344 (in Chinese).
|
Zhang, S. C., Zhu, G. Y., He, K., 2011. The Effects of Thermochemical Sulfate Reduction on Occurrence of Oil-Cracking Gas and Reformation of Deep Carbonate Reservoir and the Interaction Mechanisms. Acta Petrologica Sinica, 27(3): 809-826(in Chinese with English abstract).
|
Zhang, Y., Cao, Z. C., Chen, H. H., et al., 2023. Difference of Hydrocarbon Charging Events and Their Contribution Percentages to Ordovician Reservoirs among Strike-Slip Fault Belts in Shunbei Area, Tarim Basin. Earth Science, 48(6): 2168-2188(in Chinese with English abstract).
|
Zhang, Z., Yang, X. Z., Hao, F., et al., 2024. Fluid Inclusion Characteristics and Hydrocarbon Accumulation Process in Lungu Area, Tarim Basin. Earth Science, 49(7): 2407-2419(in Chinese with English abstract).
|
Zhang, Z., Zhang, Y., Zhu, G., et al., 2024a. Multiphase Pools Caused by Gas Invasion in Deep Ordovician Carbonates from the Tazhong Area, Tarim Basin, China. AAPG Bulletin, 108(5): 817-848. . https://doi.org/10.1306/12212318282
|
Zhang, Z., Zhu, G., Chen, W., et al., 2024b. Cryogenia-Cambrian Tectono-Sedimentary Evolution, Paleoclimate and Environment Effects, and Formation of Petroleum Resources in the Tarim Block. Earth-Science Reviews, 248: 104632. https://doi.org/10.1016/j.earscirev.2023.104632
|
Zhang, Z. Y., Zhu, G. Y., Zhang, Y. J., et al., 2018. The Origin and Accumulation of Multi-Phase Reservoirs in the East Tabei Uplift, Tarim Basin, China. Marine and Petroleum Geology, 98: 533-553. https://doi.org/10.1016/j.marpetgeo.2018.08.036
|
Zhao, J. Z., Li, Q. M., 2003. Formation and Distribution of Oil and Gas Reservoirs in Tarim Basin. In: Jia, C. Z., ed., Tarim Basin petroleum Geology and exploration Series 8. Petroleum Industry Publishing House, Beijing, 191-219 (in Chinese).
|
Zhao, M. J., Zhang, S. C., Liao, Z. Q., 2001. The Cracking Gas from Crude Oil and Its Significance in Gas Exploration. Petroleum Exploration and Development, 28(4): 47-49(in Chinese with English abstract).
|
Zhou, X. X., Lü, X. X., Zhu, G. Y., et al., 2019. Origin and Formation of Deep and Superdeep Strata Gas from Gucheng-Shunnan Block of the Tarim Basin, NW China. Journal of Petroleum Science and Engineering, 177: 361-373. https://doi.org/10.1016/j.petrol.2019.02.059
|
Zhu, G. Y., Hou, J. K., Ren, R., et al., 2025. Tectonic-Sedimentary Responses to Major Geological Events, Source Rock Formation Mechanisms, and Resource Potential at Depths Greater than 10 000 m in the Cratonic Basins of China. APG Bulletin, 109(4): 497-544. https://doi.org/10.1306/03182523116
|
Zhu, G. Y., Jiang, H., Huang, S. P., et al., 2025. New Progress of Marine Hydrocarbon Accumulation Theory and Prediction of Super Large Oil and Gas Areas in Deep Strata Buried at a Depth of about 10 000 Meters in China. Acta Petrolei Sinica, 46(4): 816-842(in Chinese with English abstract).
|
Zhu, G. Y., Li, T. T., Zhang, Z. Y., et al., 2022. Nitrogen Isotope Evidence for Oxygenated Upper Ocean during the Cryogenian Interglacial Period. Chemical Geology, 604: 120929. https://doi.org/10.1016/j.chemgeo.2022.120929
|
Zhu, G. Y., Wang, P. J., Li, T. T., et al., 2021a. Nitrogen Geochemistry and Abnormal Mercury Enrichment of Shales from the Lowermost Cambrian Niutitang Formation in South China: Implications for the Marine Redox Conditions and Hydrothermal Activity. Global and Planetary Change, 199: 103449. https://doi.org/10.1016/j.gloplacha.2021.103449
|
Zhu, G. Y., Li, T. T., Zhao, K., et al., 2021b. Mo Isotope Records from Lower Cambrian Black Shales, Northwestern Tarim Basin (China): Implications for the Early Cambrian Ocean. GSA Bulletin, 134(1-2): 3-14. https://doi.org/10.1130/b35726.1
|
Zhu, G. Y., Zhang, Z. Y., Jiang, H., et al., 2023a. Evolution of the Cryogenian Cratonic Basins in China, Paleo-Oceanic Environment and Hydrocarbon Generation Mechanism of Ancient Source Rocks, and Exploration Potential in 1 000 m-Deep Strata. Earth-Science Reviews, 244: 104506. https://doi.org/10.1016/j.earscirev.2023.104506
|
Zhu, G. Y., Li, X., Li, T. T., et al., 2023b. Genesis Mechanism and Mg Isotope Difference between the Sinian and Cambrian Dolomites in Tarim Basin. Science China Earth Sciences, 66(2): 334-357. https://doi.org/10.1007/s11430-021-1010-6
|
Zhu, G. Y., Li, X., Zhao, B., et al., 2024. Genesis and Reservoir Preservation Mechanism of 10 000 m Ultradeep Dolomite in Chinese Craton Basin. Deep Underground Science and Engineering, : dug2.12112. https://doi.org/10.1002/dug2.12112
|
Zhu, G. Y., Zhang, S. C., Su, J., et al., 2012. The Occurrence of Ultra-Deep Heavy Oils in the Tabei Uplift of the Tarim Basin, NW China. Organic Geochemistry, 52: 88-102. https://doi.org/10.1016/j.orggeochem.2012.08.012
|
Zhu, G. Y., Zhang, Z. Y., Zhou, X. X., et al., 2019a. The Complexity, Secondary Geochemical Process, Genetic Mechanism and Distribution Prediction of Deep Marine Oil and Gas in the Tarim Basin, China. Earth-Science Reviews, 198: 102930. https://doi.org/10.1016/j.earscirev.2019.102930
|
Zhu, G. Y., Zhang, Z. Y., Milkov, A. V., et al., 2019b. Diamondoids as Tracers of Late Gas Charge in Oil Reservoirs: Example from the Tazhong Area, Tarim Basin, China. Fuel, 253: 998-1017. https://doi.org/10.1016/j.fuel.2019.05.030
|
Zhu, G. Y., Milkov, A. V., Zhang, Z. Y., et al., 2019c. Formation and Preservation of a Giant Petroleum Accumulation in Superdeep Carbonate Reservoirs in the Southern Halahatang Oil Field Area, Tarim Basin, China. AAPG Bulletin, 103(7): 1703-1743. https://doi.org/10.1306/11211817132
|
黄海平, 张水昌, 苏爱国, 2001. 油气运移聚集过程中的地球化学作用. 石油实验地质, 23(3): 278-284.
|
马安来, 金之钧, 李慧莉, 等, 2020. 塔里木盆地顺北地区奥陶系超深层油藏蚀变作用及保存. 地球科学, 45(5): 1737-1753. doi: 10.3799/dqkx.2019.157
|
尚培, 陈红汉, 胡守志, 等, 2020. 塔里木盆地于奇西地区奥陶系原油特征及油气充注过程. 地球科学, 45(3): 1013-1026. doi: 10.3799/dqkx.2019.046
|
孙崇浩, 朱光有, 郑多明, 等, 2016. 塔里木盆地哈拉哈塘地区超深碳酸盐岩缝洞型储集层特征与控制因素. 矿物岩石地球化学通报, 35(5): 1028-1036.
|
闫磊, 杨敏, 张君龙, 等, 2020. 塔里木盆地塔东地区寒武系烃源岩分布及有利区带评价优选. 天然气地球科学, 31(5): 667-674.
|
杨楚鹏, 耿安松, 廖泽文, 等, 2009. 塔里木盆地塔中地区油藏气侵定量评价. 中国科学(D辑:), 39(1): 51-60.
|
张水昌, 梁狄刚, 张宝民, 等, 2004. 塔里木盆地海相油气的生成. 见: 贾承造, 主编. 塔里木盆地石油地质与勘探丛书(卷七). 北京: 石油工业出版社, 299-344.
|
张水昌, 朱光有, 何坤, 2011. 硫酸盐热化学还原作用对原油裂解成气和碳酸盐岩储层改造的影响及作用机制. 岩石学报, 27(3): 809-826.
|
张钰, 曹自成, 陈红汉, 等, 2023. 顺北地区不同走滑断裂带奥陶系油气成藏期次及其贡献度差异性. 地球科学, 48(6): 2168-2188. doi: 10.3799/dqkx.2023.103
|
张泽, 杨宪彰, 郝芳, 等, 2024. 塔里木盆地轮古地区流体包裹体特征与油气成藏过程. 地球科学, 49(7): 2407-2419. doi: 10.3799/dqkx.2022.494
|
赵靖舟, 李启明, 2003. 塔里木盆地油气藏形成与分布规律. 见: 贾承造, 主编. 塔里木盆地石油地质与勘探丛书(卷八). 北京: 石油工业出版社, 191-219.
|
赵孟军, 张水昌, 廖志勤, 2001. 原油裂解气在天然气勘探中的意义. 石油勘探与开发, 28(4): 47-49.
|
朱光有, 姜华, 黄士鹏, 等, 2025. 中国海相油气成藏理论新进展与万米深层超大型油气区预测. 石油学报, 46(4): 816-842.
|