• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 5
    May  2022
    Turn off MathJax
    Article Contents
    Liu Xiaohong, Wang Weiwei, Feng Mingyou, Zhuo Yiqian, Yue Huaihai, 2022. Hydrothermal Process and Duration of Carboniferous Altered Tuff Reservoir in Well Dixi 14 Area of Kelameili Gas Field (Junggar Basin), NW China. Earth Science, 47(5): 1694-1710. doi: 10.3799/dqkx.2021.188
    Citation: Liu Xiaohong, Wang Weiwei, Feng Mingyou, Zhuo Yiqian, Yue Huaihai, 2022. Hydrothermal Process and Duration of Carboniferous Altered Tuff Reservoir in Well Dixi 14 Area of Kelameili Gas Field (Junggar Basin), NW China. Earth Science, 47(5): 1694-1710. doi: 10.3799/dqkx.2021.188

    Hydrothermal Process and Duration of Carboniferous Altered Tuff Reservoir in Well Dixi 14 Area of Kelameili Gas Field (Junggar Basin), NW China

    doi: 10.3799/dqkx.2021.188
    • Received Date: 2021-07-26
    • Publish Date: 2022-05-25
    • To decipher the fluid action and pore evolution in the Carboniferous altered tuff reservoir in Kelameili gas field (Junggar basin, Northwest China), the petrography and geochemistry were studied by core and thin section observation, scanning electron microscopy, electron probe, cathodoluminescence, fluorescence, rare elements and U-Pb isotope dating, etc.. The results show that the pore filling minerals of reservoir in the well Dixi 14 area mainly include kaolinite, albite, quartz, chlorite, pyrite, apatite, and the pore types are mainly residual pores of feldspar (K-feldspar and plagioclase) by dissolution-infilling and intergranular pores of various authigenic minerals. Firstly, the dissolution of pyroclastic materials and the transformation of diagenetic materials were fundamental for the formation of authigenic mineral. A large number of mold pores in crystal pyroclast were formed by acid fluid dissolution and kaolinite and quartz were precipitated from pores. More importantly, diagenetic environment changes caused by burial, hydrocarbon generation, hydrothermal charging and other activities are significant for pore formation and evolution. Albite and calcite were precipitated in dissolved pores by the fluid transformation from acid to alkaline, and resulted in the rapidly decrease of pores. During Middle Yanshanian (135±27 Ma), the thermal events were critical for the formation and evolution of the reservoir. (1) The illite of matrix was transformed into K-feldspar by the recharge of high temperature and rich-silicon hydrothermal fluid. (2) Simultaneously, fluoapatite and titanite were precipitated by combination of P, Ti, F ions with Ca2+ ion that derived by secondary dissolution, and filled the pores. Quartz was precipitated in the pore by the oversaturation of SiO2 fluid. Thereafter, arsenopyrite and chlorite were formed by the transformation of alkaline and redox condition in the process of burial diagenesis. Thus, devitrification caused by temperature elevation, mineral transformation from clay to zeolite, recrystallization and dissolution partly increased the secondary reservoir space, which is beneficial to the enrichment of hydrocarbon.

       

    • loading
    • Chen, C. C., Huang, Z. L., Chen, X., et al., 2018. The Formation Conditions of the Upper Carboniferous Near-Source Tuff Tight Oil Reservoir in Santanghu Basin, Xinjiang Province. Geological Bulletin of China, 37(1): 83-92 (in Chinese with English abstract).
      Chen, X., Zhong, J. H., Yuan, J., et al., 2009. Development and Formation of Paleogene Kaolinite, Bonan Subsag. Petroleum Exploration and Development, 36(4): 456-462 (in Chinese with English abstract).
      Cheng, R. H., Shen, Y. J., Yan, J. B., et al., 2010. Diagenesis of Volcaniclastic Rocks in Hailaer Basin. Acta Petrologica Sinica, 26(1): 47-54 (in Chinese with English abstract).
      Da, J., Hu, Y., Zhao, M. J., et al., 2010. Features of Source Rocks and Hydrocarbon Pooling in the Kelameili Gasfield, the Junggar Basin. Oil & Gas Geology, 31(2): 187-192 (in Chinese with English abstract).
      Fan, Y., Dong, H., Liu, Y. N., et al., 2017. LA-ICP-MS Titanite U-Pb Dating and Its Signification in the Luohe Iron Deposit in the Lu-Zong Volcanic Basin. Acta Petrologica Sinica, 33(11): 3395-3410 (in Chinese with English abstract).
      Feng, M. Y., Liu, T., Lin, T., et al., 2019. Fracture Fillings and Implication of Fluid Activities in Volcanic Rocks: Dixi Area in Kelameili Gas Field, Junggar Basin, Northwestern China. Minerals, 9(3): 154. https://doi.org/10.3390/min9030154
      Grynberg, M. E., Papava, D., Shengelia, M., et al., 1993. Petrophysical Characteristics of the Middle Ecoene Laumontite Tuff Reservoir, Samgori Field. Republic of Georgia. J. Pet. Geol. , 16: 313-322. https://doi.org/10.1306/bf9ab726-0eb6-11d7-8643000102c1865d
      Hayden, L. A., Watson, E. B., Wark, D. A., 2008. A Thermobarometer for Sphene (Titanite). Contributions to Mineralogy and Petrology, 155(4): 529-540. https://doi.org/10.1007/s00410-007-0256-y
      Horie, K., Hidaka, H., Gauthier-Lafaye, F., 2008. Elemental Distribution in Apatite, Titanite and Zircon during Hydrothermal Alteration: Durability of Immobilization Mineral Phases for Actinides. Physics and Chemistry of the Earth, Parts A/B/C, 33(14-16): 962-968. https://doi.org/10.1016/j.pce.2008.05.008
      Hu, G. H., Zhang, Q. Q., Li, J. F., et al., 2020. Emplacement Ages of Mesozoic Granites in Liaodong Area: Constraints from Zircon and Monazite U-Pb Dating. Earth Science, 45(11): 3962-3981 (in Chinese with English abstract).
      Hu, Z. C., Zhang, W., Liu, Y. S., et al., 2015. "Wave" Signal-Smoothing and Mercury-Removing Device for Laser Ablation Quadrupole and Multiple Collector ICPMS Analysis: Application to Lead Isotope Analysis. Analytical Chemistry, 87(2): 1152-1157. https://doi.org/10.1021/ac503749k
      Huang, S. J., Huang, K. K., Feng, W. L., et al., 2009. Mass Exchanges among Feldspar, Kaolinite and Illite and Their Influences on Secondary Porosity Formation in Clastic Diagenesis-A Case Study on the Upper Paleozoic, Ordos Basin and Xujiahe Formation, Western Sichuan Depression. Geochimica, 38(5): 498-506 (in Chinese with English abstract).
      Jin, M. Q., Li, Y. G., Wang, P., et al., 2020. Element Fractionation and Correction Method for U-Pb Dating of Titanite by Laser Ablation-Inductively Coupled Plasms-Mass Spectrometry. Rock and Mineral Analysis, 39(2): 274-284 (in Chinese with English abstract).
      Kawamoto, T., 2001. Distribution and Alteration of the Volcanic Reservoir in the Minami-Nagaoka Gas Field. Sekiyu Gijutsu Kyokaishi, 66(1): 46-55.
      Li, J. W., Deng, X. D., Zhou, M. F., et al., 2009. Laser Ablation ICP-MS Titanite U-Th-Pb Dating of the Tonglushan Cu-Fe-Au Skarn Deposit, Southeastern Hubei Province. Acta Mineralogica Sinica, 29(S1): 314-316.
      Lin, X. Y., Su, Y. P., Zheng, J. P., et al., 2011. Characteristics and Controlling Factors of Volcanic Reservior in Kelameili Area of Junggar Basin. Geological Science and Technology Information, 30(6): 28-37 (in Chinese with English abstract).
      Liu, X. H., Feng, M. Y., Xi, A. H., et al., 2016a. Diagenesis and Pore Evolution of Carboniferous Volcanic Reservoirs in Dixi Area, Kelameili Gas Field. Lithologic Reservoirs, 28(1): 38-48 (in Chinese with English abstract).
      Liu, X. H., Feng, M. Y., Xi, A. H., et al., 2016b. Formation and Evolution of the Reservoir Space of Subvolcanic Reservoir: A Case Study of the Well Dixi 18 Area in Kelameili Gasfield. Natural Gas Geoscience, 27(2): 278-288 (in Chinese with English abstract).
      Liu, X. H., Zhuo, Y. Q., Feng, M. Y., et al., 2022. Constrains of Eruption Environment and Hydrothermal Fluid on the Permian Pyroclastic Reservoirs in the Sichuan Basin, SW China. Petroleum, 8(1): 17-30. https://doi.org/10.1016/j.petlm.2021.03.005
      Liu, Y. S., Gao, S., Hu, Z. C., et al., 2009. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537-571. https://doi.org/10.1093/petrology/egp082
      Ludwig, K. R., 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, 39.
      Luo, B., Xia, M. L., Wang, H., et al., 2019. Hydrocarbon Accumulation Conditions of Permian Volcanic Gas Reservoirs in the Western Sichuan Basin. Natural Gas Industry, 39(2): 9-16 (in Chinese with English abstract).
      Lü, Y. J., Peng, J. T., Cai, Y. F., 2021. Geochemical Characteristics, U-Pb Dating of Hydrothermal Titanite from the Xingfengshan Tungsten Deposit in Hunan Province and Their Geological Significance. Acta Petrologica Sinica, 37(3): 830-846 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.03.12
      Meng, Y. L., Liang, H. T., Wei, W., et al., 2013. Thermodynamic Calculations of the Laumontite Dissolution and Prediction of Secondary Porosity Zones: A Case Study of Horizon of Xujiaweizi Fault Depression. Acta Sedimentologica Sinica, 31(3): 509-515 (in Chinese with English abstract).
      Pola, A., Crosta, G., Fusi, N., et al., 2012. Influence of Alteration on Physical Properties of Volcanic Rocks. Tectonophysics, 566/567: 67-86. https://doi.org/10.1016/j.tecto.2012.07.017
      Shi, X. P., Hu, Q. X., Xie, Z. W., et al., 2016. Identification Methods of Volcanic Lithology, Lithofacies: Taking the Volcanic Rocks of Dinan Alient in the Junggar Basin as an Instance. Natural Gas Geoscience, 27(10): 1808-1816 (in Chinese with English abstract).
      Song, J. Y., Qin, M. K., Cai, Y. Q., et al., 2019. Uplift- Denudation of Orogenic Belts Control on the Formation of Sandstone Type Uranium (U) Deposits in Eastern Junggar, Northwest China: Implications from Apatite Fission Track (AFT). Earth Science, 44(11): 3910-3925 (in Chinese with English abstract)
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society Special Publication, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
      Thomas Kalan, H. P., Sitorus, M. E., 1994. Jatibarang Field, Geologic Study of Volcanic Reservoir for Horizontal Well Proposal. Indonesian Petroleum Association, 23rd Annual Convention Proceedings, 1: 229-244.
      Tomaru, H., Lu, Z. L., Fehn, U., et al., 2009. Origin of Hydrocarbons in the Green Tuff Region of Japan: 129I Results from Oil Field Brines and Hot Springs in the Akita and Niigata Basins. Chemical Geology, 264(1-4): 221-231. doi: 10.1016/j.chemgeo.2009.03.008
      Wang, J., Zhang, J., Zhang, X. J., et al., 2019. Rb-Sr Geochronology, Stable Isotopic Analyses and Geological Significance of the Tianbaoshan Pb-Zn Deposit in Sichuan Province, China. Earth Science, 44(9): 3026-3041 (in Chinese with English abstract).
      Wang, Y., Shi, Y. H., Chen, B. L., et al., 2021. Characteristics of Early Paleozoic Magmatism in Fengxian Area, West Qinling: Evidence from Petrogeochemistry, Zircon U-Pb Age and Hf Isotope. Earth Science, 46(6): 2016-2036 (in Chinese with English abstract).
      Wu, X. Z., Guo, Q. L., Zhang, W., et al., 2021. Characteristics of Volcanic Reservoirs and Hydrocarbon Accumulation of Carboniferous System in Junggar Basin, China. Journal of Earth Science, 32(4): 972-985. https://doi.org/10.1007/s12583-020-1119-y
      Xiang, H., Zhang, L., Zhong, Z. Q., et al., 2007. Titanite: U-Pb Dating and Applications on Defining P-T-t Path of Metamorphic Rocks. Advances in Earth Science, 22(12): 1258-1267 (in Chinese with English abstract).
      Yan, Y. T., Li, S. R., Jia, B. J., et al., 2012. Composition Typomorphic Characteristics and Statistic Analysis of Pyrite in Gold Deposits of Different Genetic Types. Earth Science Frontiers, 19(4): 214-226 (in Chinese with English abstract).
      Yang, X. P., Qiu, Y. N., 2002. Formation Process and Distribution of Laumontite in Yanchang Formation (Upper Triassic) of Ordos Basin. Acta Sedimentologica Sinica, 20(4): 628-632 (in Chinese with English abstract).
      Ye, K., Ye, D. N., 1996. High Pressure Effect of P+Mg+ F=Si+Al+OH Special Substitution in High Aluminum Cornistone. Chinese Science Bulletin, 41(9): 811-814 (in Chinese). doi: 10.1360/csb1996-41-9-811
      Yuan, D., 2013. Lithology, Lithofacies and Reservoir Characteristics of Carboniferous Volcanic Clastic Rock in Dixi Area, Junggar Basin (Dissertation). Southwest Petroluem University, Chengdu (in Chinese with English abstract).
      Zhang, L. Y., Ji, Y. L., Liu, L., et al., 2012. Origin of Anomalously High Porosity in Pyroclastic Reservoirs: A Case Study on the Northern Region of the East Sub-Sag in Nanbeier Sag. Acta Petrolei Sinica, 33(5): 814-821 (in Chinese with English abstract).
      Zhang, S. Y., Zhu, J., Wen, G., et al., 2015. Significant of Volcanic Eruption Spatiotemporal Sequence in Batamayineishan Formation, Ludong Region, Junggar Basin. Journal of Central South University (Science and Technology), 46(1): 199-207 (in Chinese with English abstract).
      Zhu, Q. Q., Xie, G. Q., Jiang, Z. S., et al., 2014. Characteristics and In Situ U-Pb Dating of Hydrothermal Titanite by LA-ICPMS of the Jingshandian Iron Skarn Deposit, Hubei Province. Acta Petrologica Sinica, 30(5): 1322-1338 (in Chinese with English abstract).
      Zhu, S. F., Zhu, X. M., Wu, D., et al., 2014. Alteration of Volcanics and Its Controlling Factors in the Lower Permian Reservoirs at Northwestern Margin of Junggar Basin. Oil & Gas Geology, 35(1): 77-85 (in Chinese with English abstract).
      陈常超, 黄志龙, 陈旋, 等, 2018. 新疆三塘湖盆地上石炭统近源凝灰岩致密油藏形成条件. 地质通报, 37(1): 83-92. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201801009.htm
      陈鑫, 钟建华, 袁静, 等, 2009. 渤南洼陷古近系高岭石发育特征及转化机理. 石油勘探与开发, 36(4): 456-462. doi: 10.3321/j.issn:1000-0747.2009.04.007
      程日辉, 沈艳杰, 颜景波, 等, 2010. 海拉尔盆地火山碎屑岩的成岩作用. 岩石学报, 26(1): 47-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201001007.htm
      达江, 胡咏, 赵孟军, 等, 2010. 准噶尔盆地克拉美丽气田油气源特征及成藏分析. 石油与天然气地质, 31(2): 187-192. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201002011.htm
      范裕, 董赫, 刘一男, 等, 2017. 安徽庐枞盆地罗河铁矿床中榍石LA-ICP-MS U-Pb定年及其意义. 岩石学报, 33(11): 3395-3410. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201711004.htm
      黄思静, 黄可可, 冯文立, 等, 2009. 成岩过程中长石、高岭石、伊利石之间的物质交换与次生孔隙的形成: 来自鄂尔多斯盆地上古生界和川西凹陷三叠系须家河组的研究. 地球化学, 38(5): 498-506. doi: 10.3321/j.issn:0379-1726.2009.05.009
      靳梦琪, 李艳广, 王鹏, 等, 2020. 榍石LA-ICP-MS U-Pb定年中元素分馏的影响及校正研究. 岩矿测试, 39(2): 274-284. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS202002014.htm
      胡国辉, 张琪琪, 李建锋, 等, 2020. 辽东地区中生代花岗岩的侵位时代: 锆石和独居石U‐Pb年代学. 地球科学, 45(11): 3962-3981. doi: 10.3799/dqkx.2020.293
      林向洋, 苏玉平, 郑建平, 等, 2011. 准噶尔盆地克拉美丽气田复杂火山岩储层特征及控制因素. 地质科技情报, 30(6): 28-37. doi: 10.3969/j.issn.1000-7849.2011.06.004
      刘小洪, 冯明友, 郗爱华, 等, 2016a. 克拉美丽气田滴西地区石炭系火山岩储层成岩作用及孔隙演化. 岩性油气藏, 28(1): 38-48. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201601007.htm
      刘小洪, 冯明友, 郗爱华, 等, 2016b. 次火山岩储层储集空间形成及演化——以克拉美丽气田滴西18井区为例. 天然气地球科学, 27(2): 278-288. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201602011.htm
      罗冰, 夏茂龙, 汪华, 等, 2019. 四川盆地西部二叠系火山岩气藏成藏条件分析. 天然气工业, 39(2): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201902004.htm
      吕沅峻, 彭建堂, 蔡亚飞, 2021. 湖南杏枫山钨矿床热液榍石的地球化学特征、U-Pb定年及其地质意义. 岩石学报, 37(3): 830-846. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202103012.htm
      孟元林, 梁洪涛, 魏巍, 等, 2013. 浊沸石溶蚀过程的热力学计算与次生孔隙发育带预测: 以徐家围子断陷深层为例. 沉积学报, 31(3): 509-515. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201303014.htm
      石新朴, 胡清雄, 解志薇, 等, 2016. 火山岩岩性、岩相识别方法: 以准噶尔盆地滴南凸起火山岩为例. 天然气地球科学, 27(10): 1808-1816. doi: 10.11764/j.issn.1672-1926.2016.10.1808
      宋继叶, 秦明宽, 蔡煜琦, 等, 2019. 准东构造隆升对砂岩型铀成矿作用的制约: 磷灰石裂变径迹证据. 地球科学, 44(11): 3910-3925. doi: 10.3799/dqkx.2018.331
      王健, 张均, 张晓军, 等, 2019. 四川天宝山矿床闪锌矿Rb-Sr年代学、稳定同位素及地质意义. 地球科学, 44(9): 3026-3041. doi: 10.3799/dqkx.2018.192
      王永, 石永红, 陈柏林, 等, 2021. 西秦岭凤县地区早古生代岩浆作用特征——来自岩石地球化学、锆石U-Pb年龄及Hf同位素的证据. 地球科学, 46(6): 2016-2036. doi: 10.3799/dqkx.2020.233
      向华, 张利, 钟增球, 等, 2007. 榍石: U-Pb定年及变质P-T-t轨迹的建立. 地球科学进展, 22(12): 1258-1267. doi: 10.3321/j.issn:1001-8166.2007.12.006
      严育通, 李胜荣, 贾宝剑, 等, 2012. 中国不同成因类型金矿床的黄铁矿成分标型特征及统计分析. 地学前缘, 19(4): 214-226. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201204024.htm
      杨晓萍, 裘怿楠, 2002. 鄂尔多斯盆地上三叠统延长组浊沸石的形成机理、分布规律与油气关系. 沉积学报, 20(4): 628-632. doi: 10.3969/j.issn.1000-0550.2002.04.015
      叶凯, 叶大年, 1996. 高铝榍石中P+Mg+F=Si+Al+OH特殊替代的高压效应. 科学通报, 41(9): 811-814. doi: 10.3321/j.issn:0023-074X.1996.09.012
      袁丹, 2013. 准噶尔盆地滴西地区石炭系火山碎屑岩岩性岩相及储层特征(硕士学位论文). 成都: 西南石油大学.
      张丽媛, 纪友亮, 刘立, 等, 2012. 火山碎屑岩储层异常高孔隙成因——以南贝尔凹陷东次凹北洼槽为例. 石油学报, 33(5): 814-821. doi: 10.3969/j.issn.1001-8719.2012.05.017
      张生银, 朱军, 文革, 等, 2015. 准噶尔盆地陆东地区巴塔玛依内山组火山喷发时空序列及其石油地质意义. 中南大学学报(自然科学版), 46(1): 199-207. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201501027.htm
      朱乔乔, 谢桂青, 蒋宗胜, 等, 2014. 湖北金山店大型矽卡岩型铁矿热液榍石特征和原位微区LA-ICPMS U-Pb定年. 岩石学报, 30(5): 1322-1338. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201405010.htm
      朱世发, 朱筱敏, 吴冬, 等, 2014. 准噶尔盆地西北缘下二叠统油气储层中火山物质蚀变及控制因素. 石油与天然气地质, 35(1): 77-85. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201401011.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(4)

      Article views (1327) PDF downloads(63) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return