• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 9
    Sep.  2022
    Turn off MathJax
    Article Contents
    Wu Didi, Li Shan, 2022. The Whole⁃Rock Sr⁃Nd⁃Li Isotopic Characteristics and Genesis of the Triassic Jiefangyingzi Pluton in the Southeastern Margin of the Central Asian Orogenic Belt. Earth Science, 47(9): 3301-3315. doi: 10.3799/dqkx.2021.199
    Citation: Wu Didi, Li Shan, 2022. The Whole⁃Rock Sr⁃Nd⁃Li Isotopic Characteristics and Genesis of the Triassic Jiefangyingzi Pluton in the Southeastern Margin of the Central Asian Orogenic Belt. Earth Science, 47(9): 3301-3315. doi: 10.3799/dqkx.2021.199

    The Whole⁃Rock Sr⁃Nd⁃Li Isotopic Characteristics and Genesis of the Triassic Jiefangyingzi Pluton in the Southeastern Margin of the Central Asian Orogenic Belt

    doi: 10.3799/dqkx.2021.199
    • Received Date: 2021-11-01
    • Publish Date: 2022-09-25
    • The Triassic granites in the southeastern margin of the Central Asian Orogenic Belt are of diverse types and complex genesis. In order to study their provenance and formation setting, we selected monzogranite, gneissic porphyritic granite and diorite porphyrite in the different locations of the Jiefangyingzi pluton, and performed the whole-rock elemental and Sr-Nd-Li isotope analyses, and zircon geochronology. Zircon U-Pb geochronology results show that the different rock types of the Jiefangyingzi pluton were similarly formed in the Late Triassic (234-226 Ma). Geochemical characteristics show that all of them are I-type granites undergoing different degrees of fractionation crystallization. Slightly negative to positive ɛNd(t) values (-3.9-+1.5) indicate that they derived from juvenile materials with the addition of ancient crustal materials to varying degrees. The whole-rock Li isotopic characteristics of pluton in this region are reported for the first time. The range of δ7Li value is +1.1- +6.6‰ with an average value of +3.37‰, similar to the average value of upper mantle, indicating that there is a significant contribution of mantle-derived components. Combined with regional geology, the Jiefangyingzi pluton was formed in the post-orogenic extension stage after the closure of the Paleo-Asian Ocean. Decompression melting induced the partial melting of the juvenile mantle-derived components without obvious water-rock interaction related to the early subduction process.

       

    • loading
    • Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1-2): 59-79. https://doi.org/10.1016/S0009-2541(02)00195-X
      Barnes, E. M., Weis, D., Groat, L. A., 2012. Significant Li Isotope Fractionation in Geochemically Evolved Rare Element-Bearing Pegmatites from the Little Nahanni Pegmatite Group, NWT, Canada. Lithos, 132-133: 21-36. https://doi.org/10.1016/j.lithos.2011.11.014
      Chen, B., Tian, W., Liu, A. K., et al., 2008. Petrogenesis of the Xiaozhangjiakou Mafic-Ultramafic Complex, North Hebei: Constraints from Petrological, Geochemical and Nd-Sr Isotopic Data. Geological Journal of China Universities, 14(3): 295-3030 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2008.03.002
      Deveaud, S., Millot, R., Villaros, A., 2015. The Genesis of LCT-Type Granitic Pegmatites, as Illustrated by Lithium Isotopes in Micas. Chemical Geology, 411: 97-111. https://doi.org/10.1016/j.chemgeo.2015.06.029
      Frost, B. R., Frost, C. D., 2008. A Geochemical Classification for Feldspathic Igneous Rocks. Journal of Petrology, 49(11): 1955-1969. https://doi.org/10.1093/petrology/egn054
      Han, B. F., Kagami, H., Li, H. M., 2004. Age and Nd-Sr Isotopic Geochemistry of the Guangtoushan Alkaline Granite, Hebei Province, China: Implications for Early Mesozoic Crust-Mantle Interaction in North China Block. Acta Petrologica Sinica, 20(6): 1375-1388 (in Chinese with English abstract).
      Jahn, B. M., Wu, F. Y., Chen, B., 2000. Granitoids of the Central Asian Orogenic Belt and Continental Growth in the Phanerozoic. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 91(1-2): 181-193. https://doi.org/10.1017/s0263593300007367
      Jian, P., Liu, D. Y., Kröner, A., et al., 2010. Evolution of a Permian Intraoceanic Arc-Trench System in the Solonker Suture Zone, Central Asian Orogenic Belt, China and Mongolia. Lithos, 118(1-2): 169-190. https://doi.org/10.1016/j.lithos.2010.04.014
      Li, J. Y., Gao, L. M., Sun, G. H., et al., 2007. Shuangjingzi Middle Triassic Syn-Collisional Crust-Derived Granite in the East Inner Mongolia and Its Constraint on the Timing of Collision between Siberian and Sino-Korean Paleo-Plates. Acta Petrologica Sinica, 23(3): 565-582 (in Chinese with English abstract).
      Li, P., Xia, Q. K., Deloule, E., 2012. Anomalous Lithium Isotopic Compositions of the Cenozoic Lithospheric Mantle Beneath Penglai, Shandong Province: The Ion Probe Analyses of Peridotite Xenoliths. Geological Journal of China Universities, 18(1): 62-73 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2012.01.006
      Li, S., Wilde, S. A., He, Z. J., et al., 2014. Triassic Sedimentation and Postaccretionary Crustal Evolution along the Solonker Suture Zone in Inner Mongolia, China. Tectonics, 33(6): 960-981. https://doi.org/10.1002/2013TC003444
      Li, S., Chung, S. L., Wang, T. et al., 2017a. Water-Fluxed Crustal Melting and Petrogenesis of Largescale Early Cretaceous Intracontinental Granitoids in the Southern Great Xing'an Range, North China. Geological Society of America Bulletin, 130(3-4): 580-597. https://doi.org/10.1130/B31771.1
      Li, S., Chung, S. L., Wilde, S. A., et al., 2016. Linking Magmatism with Collision in an Accretionary Orogen. Scientific Reports, 6(1): 25751. https://doi.org/10.1038/srep25751
      Li, S., Chung, S. L., Wilde, S. A., et al., 2017b. Early-Middle Triassic High Sr/Y Granitoids in the Southern Central Asian Orogenic Belt: Implications for Ocean Closure in Accretionary Orogens. Journal of Geophysical Research: Solid Earth, 122(3): 2291-2309. https://doi.org/10.1002/2017JB014006
      Li, X. H., Liu, Y., Tang, Y. J., 2015. In Situ Li Isotopic Microanalysis Using SIMS and Its Applications. Earth Science Frontiers, 22(5): 160-170 (in Chinese with English abstract).
      Liang, Q., Grégoire, D. C., 2000. Determination of Trace Elements in Twenty Six Chinese Geochemistry Reference Materials by Inductively Coupled Plasma-Mass Spectrometry. Geostandards Newsletter, 24(1): 51-63. https://doi.org/10.1111/j.1751-908X.2000.tb00586.x
      Liu, J. F., Li, J. Y., Chi, X. G., et al., 2012. Petrogenesis of Middle Triassic Post-Collisional Granite from Jiefangyingzi Area, Southeast Inner Mongolia: Constraint on the Triassic Tectonic Evolution of the North Margin of the Sino-Korean Paleoplate. Journal of Asian Earth Sciences, 60: 147-159. https://doi.org/10.1016/j.jseaes.2012.08.012
      Liu, J. F., Li, J. Y., Chi, X. G., et al., 2020. Destruction of the Northern Margin of the North China Craton in Mid‐Late Triassic: Evidence from Asthenosphere‐Derived Mafic Enclaves in the Jiefangyingzi Granitic Pluton from Chifeng Area, Southern Inner Mongolia. Acta Geologica Sinica (English Edition), 94(4): 1071-1092. https://doi.org/10.1111/1755-6724.14502
      Liu, Y. J., Li, W. M., Feng, Z. Q., et al., 2016. A Review of the Paleozoic Tectonics in the Eastern Part of Central Asian Orogenic Belt. Gondwana Research, 43: 123-148. https://doi.org/10.1016/j.gr.2016.03.013
      Ludwig, K. R., 2003. ISOPLOT 3.0: A Gochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley.
      Magna, T., Janoušek, V., Kohút, M., et al., 2010. Fingerprinting Sources of Orogenic Plutonic Rocks from Variscan Belt with Lithium Isotopes and Possible Link to Subduction-Related Origin of Some A-Type Granites. Chemical Geology, 274(1-2): 94-107. https://doi.org/10.1016/j.chemgeo.2010.03.020
      Maloney, J. S., Nabelek, P. I., Sirbescu, M. L. C. H., 2008. Lithium and Its Isotopes in Tourmaline as Indicators of the Crystallization Process in the San Diego County Pegmatites, California, USA. European Journal of Mineralogy, 20(5): 905-916. https://doi.org/10.1127/0935-1221/2008/0020-1823
      Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      Norrish, K., Hutton, J. T., 1969. An Accurate X-Ray Spectrographic Method for the Analysis of a Wide Range of Geological Samples. Geochimica et Cosmochimica Acta, 33(4): 431-453. https://doi.org/10.1016/0016-7037(69)90126-4
      Ren, J. X., Niu, B. G., Liu, Z. G., 1999. Soft Collision, Superposition Orogeny and Polycyclic Suturing. Earth Science Frontiers, 6(3): 85-93 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.1999.03.008
      Romer, R. L., Meixner, A., Förster, H. J., 2014. Lithium and Boron in Late-Orogenic Granites-Isotopic Fingerprints for the Source of Crustal Melts? Geochimica et Cosmochimica Acta, 131: 98-114. https://doi.org/10.1016/j.gca.2014.01.018
      Rudnick, R., Gao, S., 2003. Composition of the Continental Crust. In: Rudnick, R., ed., The Crust, Treatise on Geochemistry. Elsevier, Amsterdam. https://doi.org/10.1016/B0⁃08⁃043751⁃6/03016⁃4
      Sauzéat, L., Rudnick, R. L., Chauvel, C., et al., 2015. New Perspectives on the Li Isotopic Composition of the Upper Continental Crust and Its Weathering Signature. Earth and Planetary Science Letters, 428: 181-192. https://doi.org/10.1016/j.epsl.2015.07.032
      Şengör, A. M. C., Natal'in, B. A., Burtman, V. S., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364(6435): 299-307. https://doi.org/10.1038/364299a0
      Song, S. G., Wang, M. M., Xu, X., et al., 2015. Ophiolites in the Xing'an-Inner Mongolia Accretionary Belt of the CAOB: Implications for Two Cycles of Seafloor Spreading and Accretionary Orogenic Events. Tectonics, 34(10): 2221-2248. https://doi.org/10.1002/2015TC003948
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Tang, Y. J., Zhang, H. F., Ying, J. F., 2007. Review of the Lithium Isotope System as a Geochemical Tracer. International Geology Review, 49(4): 374-388. https://doi.org/10.2747/0020-6814.49.4.374
      Tang, Y. J., Zhang, H. F., Ying, J. F., 2011. Sr-Nd-Li Isotopic Constraints on the Origin of EM1 End-Member. Bulletin of Mineralogy, Petrology and Geochemistry, 30(1): 11-17 (in Chinese with English abstract). doi: 10.3969/j.issn.1007-2802.2011.01.002
      Teng, F. Z., McDonough, W. F., Rudnick, R. L., et al., 2004. Lithium Isotopic Composition and Concentration of the Upper Continental Crust. Geochimica et Cosmochimica Acta, 68(20): 4167-4178. https://doi.org/10.1016/j.gca.2004.03.031
      Teng, F. Z., McDonough, W. F., Rudnick, R. L., et al., 2006. Lithium Isotopic Systematics of Granites and Pegmatites from the Black Hills, South Dakota. American Mineralogist, 91(10): 1488-1498. https://doi.org/10.2138/am.2006.2083
      Teng, F. Z., McDonough, W. F., Rudnick, R. L., et al., 2007. Limited Lithium Isotopic Fractionation during Progressive Metamorphic Dehydration in Metapelites: A Case Study from the Onawa Contact Aureole, Maine. Chemical Geology, 239(1-2): 1-12. https://doi.org/10.1016/j.chemgeo.2006.12.003
      Teng, F. Z., Rudnick, R. L., McDonough, W. F., et al., 2008. Lithium Isotopic Composition and Concentration of the Deep Continental Crust. Chemical Geology, 255(1-2): 47-59. https://doi.org/10.1016/j.chemgeo.2008.06.009
      Teng, F. Z., Rudnick, R. L., McDonough, W. F., et al., 2009. Lithium Isotopic Systematics of A-Type Granites and Their Mafic Enclaves: Further Constraints on the Li Isotopic Composition of the Continental Crust. Chemical Geology, 262(3-4): 370-379. https://doi.org/10.1016/j.chemgeo.2009.02.009
      Tian, S. H., Hou, Z. Q., Su, A. N., et al., 2015. The Anomalous Lithium Isotopic Signature of Himalayan Collisional Zone Carbonatites in Western Sichuan, SW China: Enriched Mantle Source and Petrogenesis. Geochimica et Cosmochimica Acta, 159: 42-60. https://doi.org/10.1016/j.gca.2015.03.016
      Tian, S. H., Hu, W. J., Hou, Z. Q., et al., 2012. Enriched Mantle Source and Petrogenesis of Miocene Sailipu Ultrapotassic Rocks in Western Lhasa Block, Tibetan Plateau: Lithium Isotopic Constraints. Mineral Deposits, 31(4): 791-812 (in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2012.04.010
      Tomascak, P. B., Carlson, R. W., Shirey, S. B., 1999. Accurate and Precise Determination of Li Isotopic Compositions by Multi-Collector Sector ICP-MS. Chemical Geology, 158(1-2): 145-154. https://doi.org/10.1016/S0009-2541(99)00022-4
      Tomascak, P. B., Widom, E., Benton, L. D., et al., 2002. The Control of Lithium Budgets in Island Arcs. Earth and Planetary Science Letters, 196(3-4): 227-238. https://doi.org/10.1016/S0012-821X(01)00614-8
      Tomascak, P. B., Magna, T. S., Dohmen, R., 2016. Advances in Lithium Isotope Geochemistry. Springer International Publishing, New York.
      Wang, T., Zheng, Y. D., Zhang, J. J., et al., 2011. Pattern and Kinematic Polarity of Late Mesozoic Extension in Continental NE Asia: Perspectives from Metamorphic Core Complexes. Tectonics, 30(6): TC6007. https://doi.org/10.1029/2011TC002896
      Wang, Y., Zhou, L. Y., Zhao, L. J., 2013. Cratonic Reactivation and Orogeny: An Example from the Northern Margin of the North China Craton. Gondwana Research, 24(3-4): 1203-1222. https://doi.org/10.1016/j.gr.2013.02.011
      Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/bf00402202
      Windley, B. F., Alexeiev, D. V., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47. https://doi.org/10.1144/0016-76492006-022
      Wu, D. D., Li, S., Chew, D., et al., 2021. Permian-Triassic Magmatic Evolution of Granitoids from the Southeastern Central Asian Orogenic Belt: Implications for Accretion Leading to Collision. Science China Earth Sciences, 64(5): 788-806. https://doi.org/10.1007/ s11430-020-9714-5 doi: 10.1007/s11430-020-9714-5
      Wu, F. Y., Li, X. H., Yang, J. H., et al., 2007. Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6): 1217-1238 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0569.2007.06.001
      Wu, F. Y., Wilde, S. A., Zhang, G. L., et al., 2004. Geochronology and Petrogenesis of the Post-Orogenic Cu-Ni Sulfide-Bearing Mafic-Ultramafic Complexes in Jilin Province, NE China. Journal of Asian Earth Sciences, 23(5): 781-797. https://doi.org/10.1016/S1367-9120(03)00114-7
      Wu, F. Y., Yang, J. H., Wilde, S. A., et al., 2005. Geochronology, Petrogenesis and Tectonic Implications of Jurassic Granites in the Liaodong Peninsula, NE China. Chemical Geology, 221(1-2): 127-156. https://doi.org/10.1016/j.chemgeo.2005.04.010
      Xiao, W. J., Windley, B. F., Hao, J., et al., 2003. Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China: Termination of the Central Asian Orogenic Belt. Tectonics, 22(6): 1069. https://doi.org/10.1029/2002TC001484
      Xiao, W. J., Kusky, T., Safonova, I., et al., 2015. Tectonics of the Central Asian Orogenic Belt and Its Pacific Analogues. Journal of Asian Earth Sciences, 113: 1-6. https://doi.org/10.1016/j.jseaes.2015.06.032
      Yan, G. H., Mu, B. L., Xu, B. L., et al., 1999. Triassic Alkaline Intrusives in the Yanliao-Yinshan Area: Their Chronology, Sr, Nd and Pb Isotopic Characteristics and Their Implication. Science China Earth Sciences, 42(6): 582-587. https://doi.org/10.1007/BF02877785
      Yang, J. H., Wu, F. Y., Wilde, S. A., et al., 2008. Mesozoic Decratonization of the North China Block. Geology, 36(6): 467-470. https://doi.org/10.1130/g24518a.1
      Zeng, Q. D., Yang, J. H., Liu, J. M., et al., 2012. Genesis of the Chehugou Mo-Bearing Granitic Complex on the Northern Margin of the North China Craton: Geochemistry, Zircon U-Pb Age and Sr-Nd-Pb Isotopes. Geological Magazine, 149(5): 753-767. https://doi.org/10.1017/s0016756811000987
      Zhang, H. F., Tang, Y. J., Zhao, X. M., et al., 2007. Significance and Prospective of Non-Traditional Isotopic Systems in Mantle Geochemistry. Earth Science Frontiers, 14(2): 37-57 (in Chinese with English abstract).
      Zhang, S. H., Zhao, Y., Song, B., et al., 2009. Contrasting Late Carboniferous and Late Permian-Middle Triassic Intrusive Suites from the Northern Margin of the North China Craton: Geochronology, Petrogenesis, and Tectonic Implications. Geological Society of America Bulletin, 121(1-2): 181-200. https://doi.org/10.1130/B26157.1
      Zhang, S. H., Zhao, Y., Ye, H., et al., 2014. Origin and Evolution of the Bainaimiao Arc Belt: Implications for Crustal Growth in the Southern Central Asian Orogenic Belt. Geological Society of America Bulletin, 126(9-10): 1275-1300. https://doi.org/10.1130/b31042.1
      陈斌, 田伟, 刘安坤, 2008. 冀北小张家口基性‒超基性杂岩的成因: 岩石学、地球化学和Nd-Sr同位素证据. 高校地质学报, 14(3): 295-303. doi: 10.3969/j.issn.1006-7493.2008.03.002
      韩宝福, 加加美宽雄, 李惠民, 2004. 河北平泉光头山碱性花岗岩的时代、Nd-Sr同位素特征及其对华北早中生代壳幔相互作用的意义. 岩石学报, 20(6): 1375-1388. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200406006.htm
      李锦轶, 高立明, 孙桂华, 等, 2007. 内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束. 岩石学报, 23(3): 565-582. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200703006.htm
      李佩, 夏群科, Deloule, E., 2012. 山东蓬莱新生代岩石圈地幔的异常锂同位素组成: 橄榄岩包体的离子探针分析. 高校地质学报, 18(1): 62-73. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201201008.htm
      李献华, 刘宇, 汤艳杰, 等, 2015. 离子探针Li同位素微区原位分析技术与应用. 地学前缘, 22(5): 160-170. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201505016.htm
      任纪舜, 牛宝贵, 刘志刚, 1999. 软碰撞、叠覆造山和多旋回缝合作用. 地学前缘, 6(3): 85-93. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY199903010.htm
      汤艳杰, 张宏福, 英基丰, 2011. 地幔中EM1端员成因的锂同位素制约. 矿物岩石地球化学通报, 30(1): 11-17. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201101002.htm
      田世洪, 胡文洁, 侯增谦, 等, 2012. 拉萨地块西段中新世赛利普超钾质火山岩富集地幔源区和岩石成因: Li同位素制约. 矿床地质, 31(4): 791-812. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201204011.htm
      吴福元, 李献华, 杨进辉, 等, 2007. 花岗岩成因研究若干问题. 岩石学报, 23(6): 1217-1238. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200706000.htm
      张宏福, 汤艳杰, 赵新苗, 等, 2007. 非传统同位素体系在地幔地球化学研究中的重要性及其前景. 地学前缘, 14(2): 37-57. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200702003.htm
    • dqkxzx-47-9-3301-表1.xlsx
      dqkxzx-47-9-3301-表3.xlsx
      dqkxzx-47-9-3301-表2.xlsx
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(2)

      Article views (834) PDF downloads(75) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return