Citation: | Dai Xinran, Zhao Jianjun, Lai Qiyi, Wan Xun, Chen Keyu, Wang Dujiang, 2022. Movement Process and Formation Mechanism of Rock Avalanche in Chada, Tibet Plateau. Earth Science, 47(6): 1932-1944. doi: 10.3799/dqkx.2021.205 |
Cao, P., Li, Y. S., Li, Z. L., et al., 2021. Geological Structure Characteristics and Genetic Mechanism of Baige Landslide Slope in Changdu, Tibet. Earth Science, 46(9): 3397-3409(in Chinese with English abstract).
|
Chen, J., Chen, R. C., Mi, D. D., et al., 2020. Kinematic Processes and Fragmentation Characteristics of Walai Rock Avalanche Landslide in Tibet. Advanced Engineering Sciences, 52(6): 30-39(in Chinese with English abstract).
|
Cui, J., Gao, C. Y., Zhang, Z. L., et al., 2020. Debris Flow Movement and Accumulation Evolution of Flat Long-Runout Landslide. Advanced Engineering Sciences, 52(6): 22-29(in Chinese with English abstract).
|
Deng, J. H., Gao, Y. J., Yao, X., et al., 2021. Recognition and Implication of Basu Giant Rock Avalanche. Advanced Engineering Sciences, 53(3): 19-28(in Chinese with English abstract).
|
Gao, Y., Li, B., Gao, H. Y., et al., 2020. Progress and Issues in the Research of Impact and Scraping Effect of High-Elevation and Long-Runout Landslide. Journal of Geomechanics, 26(4): 510-519(in Chinese with English abstract).
|
Gao, Y. J., Zhao, S. Y., Deng, J. H., 2020. Developing Law of Damming Landslide and Challenges for Disaster Prevention and Mitigation in the Three-River-Parallel Territory in the Tibetan Plateau. Advanced Engineering Sciences, 52(5): 50-61(in Chinese with English absract).
|
Ge, Y. F., Zhou, T., Huo, S. L., et al., 2019. Energy Transfer Mechanism during Movement and Accumulation of Rockslide Avalanche. Earth Science, 44(11): 3939-3949(in Chinese with English absract).
|
Guo, C. B., Du, Y. B., Tong, Y. Q., et al., 2016. Huge Long-Runout Landslide Characteristics and Formation Mechanism: A Case Study of the Luanshibao Landslide, Litang County, Tibetan Plateau. Geological Bulletin of China, 35(8): 1332-1345(in Chinese with English abstract).
|
Goren, L., Aharonov, E., Anders, M. H., et al., 2010. The Long Runout of the Heart Mountain Landslide: Heating, Pressurization, and Carbonate Decomposition. Journal of Geophysical Research: Solid Earth, 115(B10): B10210. https://doi.org/10.1029/2009jb007113
|
Hu, X. B., 2020. Study on Scraping Mechanics and Dynamic Characteristics of Landslide-Debris Flow (Dissertation). Southwest University of Science and Technology, Mianyang(in Chinese with English abstract).
|
Li, Y. L., Liu, J. K., Zhang, J. J., et al., 2021. Characteristics and Potential Hazard of the Chada Collapse in Eastern Tibet. Geoscience, 35(1): 74-82(in Chinese with English absract).
|
Luo, G., Cheng, Q. G., Shen, W. G., et al., 2021. Research Status and Development Trend of the High-Altitude Extremely-Energetic Rockfalls. Earth Science, 47(3): 913-934(in Chinese with English absract).
|
Sun, P., Zhang, Y. S., Yin, Y. P., et al., 2009. Discussion on Long Runout Sliding Mechanism of Donghekou Landslide-Debr is Flow. Journal of Engineering Geology, 17(6): 737-744(in Chinese with English absract).
|
Wang, D. J., Lai, Q. Y., Meng, X. L., et al., 2021. Characteristic and Risk Analysis of Typical High Slope in Chada Valley of Southeast Tibet. Journal of Engineering Geology, 29(2): 454-465(in Chinese with English absract).
|
Wang, Y. F., Lin, Q. W., Li, K., et al., 2021. Review on Rock Avalanche Dynamics. Journal of Earth Sciences and Environment, 43(1): 164-181(in Chinese with English absract).
|
Wang, Y. S., Xu, H. B., Luo, Y. H., et al., 2009. Study of Formation Conditions and Toss Motion Program of High Landslides Induced by Earthquake. Chinese Journal of Rock Mechanics and Engineering, 28(11): 2360-2368. (in Chinese with English abstract).
|
Wei, Z. H., 2019. Study on the Initiation Mechanism and Kinematic Mechanism of Collapsed Clastic Grain Flow (Dissertation). Chongqing Jiaotong University, Chongqing(in Chinese with English abstract).
|
Xia, S. W., 2018. Study on Three Dimensional Numerical Simulation of Yigong Rock Avalanche and It's Dam Breach(Dissertation). Shanghai Jiaotong University, Shanghai(in Chinese with English abstract)
|
Yin, Y. P., Wang, W. P., Zhang, N., et al., 2017. Long Runout Geological Disaster Initiated by the Ridge-Top Rockslide in a Strong Earthquake Area: A Case Study of the Xinmo Landslide in Maoxian County, Sichuan Province. Geology in China, 44(5): 827-841(in Chinese with English abstract)
|
Zeng, Q. L., Wei, R. Q., Xue, X. Y., et al., 2018. Characteristics and Runout Mechanism of Super-Large Xinmo Rock Avalanche-Debris Flow in Diexi, Sichuan Province. Journal of Engineering Geology, 26(1): 193-206(in Chinese with English absract).
|
Zhu, Y. X., Dai, F. C., Liang, L. J., 2020. Analysis on the Formation Mechanism of Rapid and Long Runout Landslides in Liquefaction-Type in Tibetan Plateau. Advanced Engineering Sciences, 52(6): 10-21(in Chinese with English absract).
|
曹鹏, 黎应书, 李宗亮, 等, 2021. 西藏昌都白格滑坡斜坡地质结构特征及成因机制. 地球科学, 46(9): 3397-3409. doi: 10.3799/dqkx.2020.333
|
陈剑, 陈瑞琛, 米东东, 等, 2020. 西藏瓦来高速远程滑坡的运动学过程与碎裂化特征. 工程科学与技术, 52(6): 30-39. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202006005.htm
|
崔杰, 高春玉, 张志龙, 等, 2020. 平敞型高速远程滑坡碎屑流运动与堆积演化规律研究. 工程科学与技术, 52(6): 22-29. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202006004.htm
|
邓建辉, 高云建, 姚鑫, 等, 2021. 八宿巨型滑坡的发现及其意义. 工程科学与技术, 53(3): 19-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202103004.htm
|
高杨, 李滨, 高浩源, 等, 2020. 高位远程滑坡冲击铲刮效应研究进展及问题. 地质力学学报, 26(4): 510-519. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202004008.htm
|
高云建, 赵思远, 邓建辉, 2020. 青藏高原三江并流区重大堵江滑坡孕育规律及其防灾挑战. 工程科学与技术, 52(5): 50-61. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202005005.htm
|
葛云峰, 周婷, 霍少磊, 等, 2019. 高速远程滑坡运动堆积过程中的能量传递机制. 地球科学, 44(11): 3939-3949. doi: 10.3799/dqkx.2017.589
|
郭长宝, 杜宇本, 佟元清, 等, 2016. 青藏高原东缘理塘乱石包高速远程滑坡发育特征与形成机理. 地质通报, 35(8): 1332-1345. doi: 10.3969/j.issn.1671-2552.2016.08.014
|
胡晓波, 2020. 滑坡碎屑流铲刮效应力学机制及动力特征研究(硕士学位论文). 绵阳: 西南科技大学.
|
李元灵, 刘建康, 张佳佳, 等, 2021. 藏东察达高位崩塌发育特征及潜在危险. 现代地质, 35(1): 74-82. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202101009.htm
|
罗刚, 程谦恭, 沈位刚, 等, 2021. 高位高能岩崩研究现状与发展趋势. 地球科学, 47(3): 913-934. doi: 10.3799/dqkx.2021.133
|
孙萍, 张永双, 殷跃平, 等, 2009. 东河口滑坡-碎屑流高速远程运移机制探讨. 工程地质学报, 17(6): 737-744. doi: 10.3969/j.issn.1004-9665.2009.06.002
|
王杜江, 赖琪毅, 孟祥连, 等, 2021. 藏东南察达沟谷典型高位斜坡特征及风险分析. 工程地质学报, 29(2): 454-465. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202102015.htm
|
王玉峰, 林棋文, 李坤, 等, 2021. 高速远程滑坡动力学研究进展. 地球科学与环境学报, 43(1): 164-181. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202101012.htm
|
王运生, 徐鸿彪, 罗永红, 等, 2009. 地震高位滑坡形成条件及抛射运动程式研究. 岩石力学与工程学报, 28(11): 2360-2368. doi: 10.3321/j.issn:1000-6915.2009.11.027
|
魏志鸿, 2019. 崩塌碎屑流启动机理与运动机制研究(硕士学位论文). 重庆: 重庆交通大学.
|
夏式伟, 2018. 易贡滑坡-碎屑流-堰塞坝溃决三维数值模拟研究(硕士学位论文). 上海: 上海交通大学.
|
殷跃平, 王文沛, 张楠, 等, 2017. 强震区高位滑坡远程灾害特征研究: 以四川茂县新磨滑坡为例. 中国地质, 44(5): 827-841. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201705002.htm
|
曾庆利, 魏荣强, 薛鑫宇, 等, 2018. 茂县新磨特大滑坡-碎屑流的发育特征与运移机理. 工程地质学报, 26(1): 193-206. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201801021.htm
|
朱雨轩, 戴福初, 梁莲姬, 2020. 青藏高原典型液化型高速远程滑坡形成机制分析. 工程科学与技术, 52(6): 10-21. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202006003.htm
|