Citation: | Zhu Zichao, Liu Hui, Mao Shengjun, Ma Aolan, Li Minjing, 2023. Distribution Characteristics of Microbial Communities in River-Groundwater Interaction Zone and Main Environmental Factors. Earth Science, 48(10): 3832-3843. doi: 10.3799/dqkx.2021.217 |
Abraham, W. R., Rohde, M., Bennasar, A., 2014. The Family Caulobacteraceae. In: Rosenberg, E., et al., eds., The Prokaryotes: Alphaproteobacteria and Betaproteobacteria. Springer Berlin Heidelberg, Heidelberg, 179-205.
|
Allison, S. D., Martiny, J. B. H., 2008. Resistance, Resilience, and Redundancy in Microbial Communities. Proceedings of the National Academy of Sciences of the United States of America, 105 (Supplement_1): 11512-11519. https://doi.org/10.1073/pnas.0801925105
|
Benner, S. G., Smart, E. W., Moore, J. N., 1995. Metal Behavior during Surface-Groundwater Interaction, Silver Bow Creek, Montana. Environmental Science & Technology, 29(7): 1789-1795. https://doi.org/10.1021/es00007a015
|
Bott, T. L., Kaplan, L. A., 1985. Bacterial Biomass, Metabolic State, and Activity in Stream Sediments: Relation to Environmental Variables and Multiple Assay Comparisons. Applied and Environmental Microbiology, 50(2): 508-522. https://doi.org/10.1128/aem.50.2.508-522.1985
|
Chain, P., Lamerdin, J., Larimer, F., et al., 2003. Complete Genome Sequence of the Ammonia-Oxidizing Bacterium and Obligate Chemolithoautotroph Nitrosomonas Europaea. Journal of Bacteriology, 185(9): 2759-2773. https://doi.org/10.1128/jb.185.9.2759-2773.2003
|
Chen, J. W., Ge, J. W., Feng, L., et al., 2020. Methane Flux Characteristics and Its Relationship with Soil Microbial Community Composition of Dajiuhu Peatland in Shennongjia. Earth Science, 45(3): 1082-1092(in Chinese with English abstract).
|
Coenye, T., 2014. The Family Burkholderiaceae. In: Rosenberg, E., et al., eds., The Prokaryotes: Alphaproteobacteria and Betaproteobacteria. Springer Berlin Heidelberg, Heidelberg, 759-776.
|
DeFlaun, M. F., Mayer, L. M., 1983. Relationships between Bacteria and Grain Surfaces in Intertidal Sediments1. Limnology and Oceanography, 28(5): 873-881. https://doi.org/10.4319/lo.1983.28.5.0873
|
Febria, C. M., Fulthorpe, R. R., Williams, D. D., 2010. Characterizing Seasonal Changes in Physicochemistry and Bacterial Community Composition in Hyporheic Sediments. Hydrobiologia, 647(1): 113-126. https://doi.org/10.1007/s10750-009-9882-x
|
Feris, K. P., Ramsey, P. W., Frazar, C., et al., 2003. Structure and Seasonal Dynamics of Hyporheic Zone Microbial Communities in Free-Stone Rivers of the Western United States. Microbial Ecology, 46(2): 200-215. https://doi.org/10.1007/BF03036883
|
Fischer, H., Kloep, F., Wilzcek, S., et al., 2005. A River's Liver-Microbial Processes within the Hyporheic Zone of a Large Lowland River. Biogeochemistry, 76(2): 349-371. https://doi.org/10.1007/s10533-005-6896-y
|
Gayraud, S., Philippe, M., 2003. Influence of Bed-Sediment Features on the Interstitial Habitat Available for Macroinvertebrates in 15 French Streams. International Review of Hydrobiology, 88(1): 77-93. https://doi.org/10.1002/iroh.200390007
|
Harvey, J. W., Fuller, C. C., 1998. Effect of Enhanced Manganese Oxidation in the Hyporheic Zone on Basin-Scale Geochemical Mass Balance. Water Resources Research, 34(4): 623-636. https://doi.org/10.1029/97wr03606
|
Lee, J. H., Fredrickson, J. K., Kukkadapu, R. K., et al., 2012. Microbial Reductive Transformation of Phyllosilicate Fe(III) and U(VI) in Fluvial Subsurface Sediments. Environmental Science & Technology, 46(7): 3721-3730. https://doi.org/10.1021/es204528m
|
Lin, X. J., McKinley, J., Resch, C. T., et al., 2012. Spatial and Temporal Dynamics of the Microbial Community in the Hanford Unconfined Aquifer. The ISME Journal, 6(9): 1665-1676. https://doi.org/10.1038/ismej.2012.26
|
Liu, S. N., Chui, T. F. M., 2019. Numerical Modelling to Evaluate the Nitrogen Removal Rate in Hyporheic Zone and Its Implications for Stream Management. Hydrological Processes, 33(24): 3084-3097. https://doi.org/10.1002/hyp.13548
|
Lowell, J. L., Gordon, N., Engstrom, D., et al., 2009. Habitat Heterogeneity and Associated Microbial Community Structure in a Small-Scale Floodplain Hyporheic Flow Path. Microbial Ecology, 58(3): 611-620. https://doi.org/10.1007/s00248-009-9525-9
|
Lu, S. D., Sun, Y. J., Zhao, X., et al., 2016. Sequencing Insights into Microbial Communities in the Water and Sediments of Fenghe River, China. Archives of Environmental Contamination and Toxicology, 71(1): 122-132. https://doi.org/10.1007/s00244-016-0277-5
|
Nogaro, G., Datry, T., Mermillod-Blondin, F., et al., 2010. Influence of Streambed Sediment Clogging on Microbial Processes in the Hyporheic Zone. Freshwater Biology, 55(6): 1288-1302. https://doi.org/10.1111/j.1365-2427.2009.02352.x
|
Nogaro, G., Datry, T., Mermillod-Blondin, F., et al., 2013. Influence of Hyporheic Zone Characteristics on the Structure and Activity of Microbial Assemblages. Freshwater Biology, 58(12): 2567-2583. https://doi.org/10.1111/fwb.12233
|
Olsen, D. A., Townsend, C. R., 2003. Hyporheic Community Composition in a Gravel-Bed Stream: Influence of Vertical Hydrological Exchange, Sediment Structure and Physicochemistry. Freshwater Biology, 48(8): 1363-1378. https://doi.org/10.1046/j.1365-2427.2003.01097.x
|
Pascual, J., García-López, M., Bills, G. F., et al., 2015. Pseudomonas Granadensis sp. nov., a New Bacterial Species Isolated from the Tejeda, Almijara and Alhama Natural Park, Granada, Spain. International Journal of Systematic and Evolutionary Microbiology, 65(Pt_2): 625-632. https://doi.org/10.1099/ijs.0.069260-0
|
Ren, J., Cheng, J. Q., Yang, J., et al., 2018. A Review on Using Heat as a Tool for Studying Groundwater-Surface Water Interactions. Environmental Earth Sciences, 77(22): 1-13. https://doi.org/10.1007/s12665-018-7959-4
|
Sackett, J. D., Shope, C. L., Bruckner, J. C., et al., 2019. Microbial Community Structure and Metabolic Potential of the Hyporheic Zone of a Large Mid-Stream Channel Bar. Geomicrobiology Journal, 36(9): 765-776. https://doi.org/10.1080/01490451.2019.1621964
|
Sliva, L., Williams, D. D., 2005. Exploration of Riffle-Scale Interactions between Abiotic Variables and Microbial Assemblages in the Hyporheic Zone. Canadian Journal of Fisheries and Aquatic Sciences, 62(2): 276-290. https://doi.org/10.1139/f04-190
|
Stegen, J. C., Johnson, T., Fredrickson, J. K., et al., 2018. Publisher Correction: Influences of Organic Carbon Speciation on Hyporheic Corridor Biogeochemistry and Microbial Ecology. Nature Communications, 9: 1034. https://doi.org/10.1038/s41467-018-02922-9
|
Takaichi, S., Maoka, T., Takasaki, K., et al., 2010. Carotenoids of Gemmatimonas Aurantiaca (Gemmatimonadetes): Identification of a Novel Carotenoid, Deoxyoscillol 2-Rhamnoside, and Proposed Biosynthetic Pathway of Oscillol 2, 2'-Dirhamnoside. Microbiology, 156(3): 757-763. https://doi.org/10.1099/mic.0.034249-0
|
Wilhelm, R. C., Murphy, S. J. L., Feriancek, N. M., et al., 2020. Paraburkholderia Madseniana sp. nov., a Phenolic Acid-Degrading Bacterium Isolated from Acidic Forest Soil. International Journal of Systematic and Evolutionary Microbiology, 70(3): 2137-2146. https://doi.org/10.1099/ijsem.0.004029
|
Xiao, Y. N., Zhong, X. L., Wang, B. C., et al., 2020. Microbial Community Structure and Function and Their Influencing Factors in the Soil of Horqin Area of Tongliao City, Inner Mongolia. Earth Science, 45(3): 1071-1081(in Chinese with English abstract).
|
Yuan, X. Z., Luo, G. Y., 2003. A Brief Review for Ecological Studies on Hyporheic Zone of Stream Ecosystem. Acta Ecologica Sinica, 23(5): 956-964(in Chinese).
|
谌佳伟, 葛继稳, 冯亮, 等, 2020. 神农架大九湖泥炭湿地甲烷通量特征及其与土壤微生物群落组成的关系. 地球科学, 45(3): 1082-1092. doi: 10.3799/dqkx.2019.289
|
肖玉娜, 钟信林, 王北辰, 等, 2020. 通辽科尔沁地区土壤微生物群落结构和功能及其影响因素. 地球科学, 45(3): 1071-1081. doi: 10.3799/dqkx.2019.067
|
袁兴中, 罗固源, 2003. 溪流生态系统潜流带生态学研究概述. 生态学报, 23(5): 956-964. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB200305016.htm
|