Citation: | Wang Zaicong, Wang Christina Yan, Wang Xiang, Cheng Huai, Xu Zhe, 2021. Metasomatized Lithospheric Mantle and Gold Mineralization. Earth Science, 46(12): 4197-4229. doi: 10.3799/dqkx.2021.221 |
Ackerman, L., Polák, L., Magna, T., et al., 2019. Highly Siderophile Element Geochemistry and Re-Os Isotopic Systematics of Carbonatites: Insights from Tamil Nadu, India. Earth and Planetary Science Letters, 520: 175-187. https://doi.org/10.1016/j.epsl.2019.05.035
|
Alard, O., Griffin, W.L., Lorand, J.P., et al., 2000. Non-Chondritic Distribution of the Highly Siderophile Elements in Mantle Sulphides. Nature, 407: 891-894. https://doi.org/10.1038/35038049
|
Alard, O., Lorand, J.P., Reisberg, L., et al., 2011. Volatile-Rich Metasomatism in Montferrier Xenoliths (Southern France): Implications for the Abundances of Chalcophile and Highly Siderophile Elements in the Subcontinental Mantle. Journal of Petrology, 52(10): 2009-2045. https://doi.org/10.1093/petrology/egr038
|
Audétat, A., Edmonds, M., 2020. Magmatic-Hydrothermal Fluids. Elements, 16(6): 401-406. https://doi.org/10.2138/gselements.16.6.401
|
Audétat, A., Simon, A.C., 2012. Magmatic Controls on Porphyry Copper Genesis. Geology and Genesis. In: Hedenquist, J.W., Harris, M., Camus, F., eds., Geology and Genesis of Major Copper Deposits and Districts of the World. A Tribute to Richard H. Sillitoe. Society of Economic Geologists, 16: 553-572.
|
Aulbach, S., Giuliani, A., Fiorentini, M.L., et al., 2021. Siderophile and Chalcophile Elements in Spinels, Sulphides and Native Ni in Strongly Metasomatised Xenoliths from the Bultfontein Kimberlite (South Africa). Lithos, 380-381: 105880. https://doi.org/10.1016/j.lithos.2020.105880
|
Aulbach, S., Mungall, J.E., Pearson, D.G., 2016. Distribution and Processing of Highly Siderophile Elements in Cratonic Mantle Lithosphere. Reviews in Mineralogy and Geochemistry, 81(1): 239-304. https://doi.org/10.2138/rmg.2016.81.5
|
Aulbach, S., Stachel, T., Seitz, H.M., et al., 2012. Chalcophile and Siderophile Elements in Sulphide Inclusions in Eclogitic Diamonds and Metal Cycling in a Paleoproterozoic Subduction Zone. Geochimica et Cosmochimica Acta, 93: 278-299. https://doi.org/10.1016/j.gca.2012.04.027
|
Ballhaus, C., Bockrath, C., Wohlgemuth-Ueberwasser, C., et al., 2006. Fractionation of the Noble Metals by Physical Processes. Contributions to Mineralogy and Petrology, 152(6): 667-684. https://doi.org/10.1007/s00410-006-0126-z
|
Barnes, S.J., Mungall, J.E., Maier, W.D., 2015. Platinum Group Elements in Mantle Melts and Mantle Samples. Lithos, 232: 395-417. https://doi.org/10.1016/j.lithos.2015.07.007
|
Becker, H., Dale, C.W., 2016. Re-Pt-Os Isotopic and Highly Siderophile Element Behavior in Oceanic and Continental Mantle Tectonites. Reviews in Mineralogy and Geochemistry, 81(1): 369-440. https://doi.org/10.2138/rmg.2016.81.7
|
Becker, H., Horan, M.F., Walker, R.J., et al., 2006. Highly Siderophile Element Composition of the Earth's Primitive Upper Mantle: Constraints from New Data on Peridotite Massifs and Xenoliths. Geochimica et Cosmochimica Acta, 70(17): 4528-4550. https://doi.org/10.1016/j.gca.2006.06.004
|
Blanks, D.E., Holwell, D.A., Fiorentini, M.L., et al., 2020. Fluxing of Mantle Carbon as a Physical Agent for Metallogenic Fertilization of the Crust. Nature Communications, 11(1): 4342. https://doi.org/10.1038/s41467-020-18157-6
|
Botcharnikov, R.E., Holtz, F., Mungall, J.E., et al., 2013. Behavior of Gold in a Magma at Sulfide-Sulfate Transition: Revisited. American Mineralogist, 98(8-9): 1459-1464. https://doi.org/10.2138/am.2013.4502
|
Botcharnikov, R.E., Linnen, R.L., Wilke, M., et al., 2011. High Gold Concentrations in Sulphide-Bearing Magma under Oxidizing Conditions. Nature Geoscience, 4(2): 112-115. https://doi.org/10.1038/ngeo1042
|
Brenan, J.M., 2015. Se-Te Fractionation by Sulfide-Silicate Melt Partitioning: Implications for the Composition of Mantle-Derived Magmas and Their Melting Residues. Earth and Planetary Science Letters, 422: 45-57. https://doi.org/10.1016/j.epsl.2015.04.011
|
Brenan, J.M., Bennett, N.R., Zajacz, Z., 2016. Experimental Results on Fractionation of the Highly Siderophile Elements (HSE) at Variable Pressures and Temperatures during Planetary and Magmatic Differentiation. Reviews in Mineralogy and Geochemistry, 81(1): 1-87. https://doi.org/10.2138/rmg.2016.81.1
|
Brügmann, G.E., Arndt, N.T., Hofmann, A.W., et al., 1987. Noble Metal Abundances in Komatiite Suites from Alexo, Ontario and Gorgona Island, Colombia. Geochimica et Cosmochimica Acta, 51(8): 2159-2169. https://doi.org/10.1016/0016-7037(87)90265-1
|
Burness, S., Smart, K.A., Tappe, S., et al., 2020. Sulphur-Rich Mantle Metasomatism of Kaapvaal Craton Eclogites and Its Role in Redox-Controlled Platinum Group Element Mobility. Chemical Geology, 542: 119476. https://doi.org/10.1016/j.chemgeo.2020.119476
|
Burrows, D.R., Spooner, E.T.C., 1989. Relationships between Archean Gold Quartz Vein-Shear Zone Mineralization and Igneous Intrusions in the Val D'or and Timmins Areas, Abitibi Subprovince, Canada. In: Keays, R.R., Ramsay, W.R.H., Groves, D.I., eds., The Geology of Gold Deposits: The Perspective in 1988. Society of Economic Geologists. McLean, Va, U.S.A. . https://doi.org/
|
Cai, R.H., Liu, J.G., Pearson, D.G., et al., 2021. Oxidation of the Deep Big Mantle Wedge by Recycled Carbonates: Constraints from Highly Siderophile Elements and Osmium Isotopes. Geochimica et Cosmochimica Acta, 295: 207-223. https://doi.org/10.1016/j.gca.2020.12.019
|
Campbell, I.H., Griffiths, R.W., 1992. The Changing Nature of Mantle Hotspots through Time: Implications for the Chemical Evolution of the Mantle. The Journal of Geology, 100(5): 497-523. https://doi.org/10.1086/629605
|
Cawood, P., Fryer, B.J., 1994. Noble Metal Abundances in Backarc Basin Basalts (Lau Basin, Southwest Pacific). Proceedings of the Ocean Drilling Program. Scientific Results, 135: 595-602. https://doi.org/10.2973/odp.proc.sr.135.137.1994
|
Chambefort, I., Stefánsson, A., 2020. Fluids in Geothermal Systems. Elements, 16(6): 407-411. https://doi.org/10.2138/gselements.16.6.407
|
Chang, J., Audétat, A., Li, J.W., 2021. Tectono-Magmatic Controls on Decratonic Gold Deposits. Contributions to Mineralogy and Petrology, 176(9): 69. https://doi.org/10.1007/s00410-021-01824-2
|
Chen, Y., Su, B., Guo, S., 2015. The Dabie-Sulu Orogenic Peridotites: Progress and Key Issues. Science China: Earth Sciences, 58(10): 1679-1699. https://doi.org/10.1007/s11430-015-5148-9
|
Chen, Y.J., Pirajno, F., Lai, Y., et al., 2004. Metallogenic Time and Tectonic Setting of the Jiaodong Gold Province, Esatern China. Acta Petrologica Sinica, 20(4): 907-922(in Chinese with English abstract).
|
Cheng, H., Wang, Z.C., Chen, K., et al., 2019. High-Precision Determination of Gold Mass Fractions in Geological Reference Materials by Internal Standardisation. Geostandards and Geoanalytical Research, 43(4): 663-680. https://doi.org/10.1111/ggr.12284
|
Chiaradia, M., 2014. Copper Enrichment in Arc Magmas Controlled by Overriding Plate Thickness. Nature Geoscience, 7(1): 43-46. https://doi.org/10.1038/ngeo2028
|
Chiaradia, M., 2020a. Gold Endowments of Porphyry Deposits Controlled by Precipitation Efficiency. Nature Communications, 11(1): 248. https://doi.org/10.1038/s41467-019-14113-1
|
Chiaradia, M., 2020b. How Much Water in Basaltic Melts Parental to Porphyry Copper Deposits? Frontiers in Earth Science, 8: 138. https://doi.org/10.3389/feart.2020.00138
|
Choi, E., Fiorentini, M.L., Hughes, H.S.R., et al., 2020. Platinum-Group Element and Au Geochemistry of Late Archean to Proterozoic Calc-Alkaline and Alkaline Magmas in the Yilgarn Craton, Western Australia. Lithos, 374-375: 105716. https://doi.org/10.1016/j.lithos.2020.105716
|
Chowdhury, P., Dasgupta, R., 2020. Sulfur Extraction via Carbonated Melts from Sulfide-Bearing Mantle Lithologies: Implications for Deep Sulfur Cycle and Mantle Redox. Geochimica et Cosmochimica Acta, 269: 376-397. https://doi.org/10.1016/j.gca.2019.11.002
|
Chowdhury, P., Dasgupta, R., Phelps, P.R., et al., 2021. Partitioning of Chalcophile and Highly Siderophile Elements (HSEs) between Sulfide and Carbonated Melt-Implications for HSE Systematics of Kimberlites, Carbonatites, and Melt Metasomatized Mantle Domains. Geochimica et Cosmochimica Acta, 305: 130-147. https://doi.org/10.1016/j.gca.2021.05.006
|
Christie, D.M., Carmichael, I.S.E., Langmuir, C.H., 1986. Oxidation States of Mid-Ocean Ridge Basalt Glasses. Earth and Planetary Science Letters, 79(3-4): 397-411. https://doi.org/10.1016/0012-821x(86)90195-0
|
Cooke, D.R., Hollings, P., Walshe, J.L., 2005. Giant Porphyry Deposits: Characteristics, Distribution, and Tectonic Controls. Economic Geology, 100(5): 801-818. https://doi.org/10.2113/gsecongeo.100.5.801
|
Crossley, R.J., Evans, K.A., Evans, N.J., et al., 2020. Tracing Highly Siderophile Elements through Subduction: Insights from High-Pressure Serpentinites and 'Hybrid' Rocks from Alpine Corsica. Journal of Petrology, 61(2): egaa030. https://doi.org/10.1093/petrology/egaa030
|
Day, J.M.D., Pearson, D.G., MacPherson, C.G., et al., 2009. Pyroxenite-Rich Mantle Formed by Recycled Oceanic Lithosphere: Oxygen-Osmium Isotope Evidence from Canary Island Lavas. Geology, 37(6): 555-558. https://doi.org/10.1130/g25613a.1
|
Delpech, G., Lorand, J.P., Grégoire, M., et al., 2012. In-Situ Geochemistry of Sulfides in Highly Metasomatized Mantle Xenoliths from Kerguelen, Southern Indian Ocean. Lithos, 154: 296-314. https://doi.org/10.1016/j.lithos.2012.07.018
|
Deng, J., Liu, X.F., Wang, Q.F., et al., 2017. Isotopic Characterization and Petrogenetic Modeling of Early Cretaceous Mafic Diking: Lithospheric Extension in the North China Craton, Eastern Asia. GSA Bulletin, 129(11-12): 1379-1407. https://doi.org/10.1130/b31609.1
|
Deng, J., Yang, L.Q., Groves, D.I., et al., 2020a. An Integrated Mineral System Model for the Gold Deposits of the Giant Jiaodong Province, Eastern China. Earth-Science Reviews, 208: 103274. https://doi.org/10.1016/j.earscirev.2020.103274
|
Deng, J., Wang, Q.F., Gao, L., et al., 2020b. Differential Crustal Rotation and Its Control on Giant Ore Clusters along the Eastern Margin of Tibet. Geology, 49(4): 428-432. https://doi.org/10.1130/g47855.1
|
Deng, L. X, ,Liu, Y.S., Zong, K.Q., et al., 2019. Carbonate Metasomatism and Its Identification Characteristics in Mantle Peridotite. Earth Science, 44(4): 1113-1127(in Chinese with English abstract).
|
Dijkstra, A.H., Hatch, C., 2018. Mapping a Hidden Terrane Boundary in the Mantle Lithosphere with Lamprophyres. Nature Communications, 9(1): 3770. https://doi.org/10.1038/s41467-018-06253-7
|
Ding, S., Dasgupta, R., 2017. The Fate of Sulfide during Decompression Melting of Peridotite-Implications for Sulfur Inventory of the MORB-Source Depleted Upper Mantle. Earth and Planetary Science Letters, 459: 183-195. https://doi.org/10.1016/j.epsl.2016.11.020
|
Dongre, A., Tappe, S., 2019. Kimberlite and Carbonatite Dykes within the Premier Diatreme Root (Cullinan Diamond Mine, South Africa): New Insights to Mineralogical-Genetic Classifications and Magma CO2 Degassing. Lithos, 338-339: 155-173. https://doi.org/10.1016/j.lithos.2019.04.020
|
Downes, H., 2007. Origin and Significance of Spinel and Garnet Pyroxenites in the Shallow Lithospheric Mantle: Ultramafic Massifs in Orogenic Belts in Western Europe and NW Africa. Lithos, 99(1-2): 1-24. https://doi.org/10.1016/j.lithos.2007.05.006
|
D'Souza, R.J., Canil, D., 2018. Effect of Alkalinity on Sulfur Concentration at Sulfide Saturation in Hydrous Basaltic Andesite to Shoshonite Melts at 1 270℃ and 1 GPa. American Mineralogist, 103(7): 1030-1043. https://doi.org/10.2138/am-2018-6404
|
Edmonds, M., Mather, T.A., 2017. Volcanic Sulfides and Outgassing. Elements, 13(2): 105-110. https://doi.org/10.2113/gselements.13.2.105
|
Evans, K.A., Elburg, M.A., Kamenetsky, V.S., 2012. Oxidation State of Subarc Mantle. Geology, 40(9): 783-786. https://doi.org/10.1130/g33037.1
|
Evans, K.A., Tomkins, A.G., Cliff, J., et al., 2014. Insights into Subduction Zone Sulfur Recycling from Isotopic Analysis of Eclogite-Hosted Sulfides. Chemical Geology, 365: 1-19. https://doi.org/10.1016/j.chemgeo.2013.11.026
|
Fan, H.R., Hu, F.F., Yang, J.H., et al., 2005. Fluid Evolution and Large-Scale Gold Metallogeny during Mesozoic Tectonic Transition in the Eastern Shandong Province. Acta Petrologica Sinica, 21(5): 1317-1328(in Chinese with English abstract).
|
Fan, H.R., Lan, T.G., Li, X.H., et al., 2021. Conditions and Processes Leading to Large-Scale Gold Deposition in the Jiaodong Province, Eastern China. Scientia Sinica (Terrae), 51(9): 1504-1523(in Chinese). doi: 10.1360/SSTe-2020-0335
|
Fischer-Gödde, M., Becker, H., Wombacher, F., 2011. Rhodium, Gold and Other Highly Siderophile Elements in Orogenic Peridotites and Peridotite Xenoliths. Chemical Geology, 280(3-4): 365-383. https://doi.org/10.1016/j.chemgeo.2010.11.024
|
Foley, S., 1992. Vein-Plus-Wall-Rock Melting Mechanisms in the Lithosphere and the Origin of Potassic Alkaline Magmas. Lithos, 28(3-6): 435-453. https://doi.org/10.1016/0024-4937(92)90018-t
|
Fonseca, R.O.C., Campbell, I.H., O'Neill, H.S.C., et al., 2009. Solubility of Pt in Sulphide Mattes: Implications for the Genesis of PGE-Rich Horizons in Layered Intrusions. Geochimica et Cosmochimica Acta, 73(19): 5764-5777. https://doi.org/10.1016/j.gca.2009.06.038
|
Fonseca, R.O.C., Laurenz, V., Mallmann, G., et al., 2012. New Constraints on the Genesis and Long-Term Stability of Os-Rich Alloys in the Earth's Mantle. Geochimica et Cosmochimica Acta, 87: 227-242. https://doi.org/10.1016/j.gca.2012.04.002
|
Fortin, M.A., Riddle, J., Desjardins-Langlais, Y., et al., 2015. The Effect of Water on the Sulfur Concentration at Sulfide Saturation (SCSS) in Natural Melts. Geochimica et Cosmochimica Acta, 160: 100-116. https://doi.org/10.1016/j.gca.2015.03.022
|
Foustoukos, D.I., 2019. Hydrothermal Oxidation of Os. Geochimica et Cosmochimica Acta, 255: 237-246. https://doi.org/10.1016/j.gca.2019.04.019
|
Fox, N., Cooke, D.R., Harris, A.C., et al., 2015. Porphyry Au-Cu Mineralization Controlled by Reactivation of an Arc-Transverse Volcanosedimentary Subbasin. Geology, 43(9): 811-814. https://doi.org/10.1130/g36992.1
|
Frank, M.R., Candela, P.A., Piccoli, P.M., et al., 2002. Gold Solubility, Speciation, and Partitioning as a Function of HCl in the Brine-Silicate Melt-Metallic Gold System at 800℃ and 100 MPa. Geochimica et Cosmochimica Acta, 66(21): 3719-3732. https://doi.org/10.1016/s0016-7037(01)00900-0
|
Frank, M.R., Simon, A.C., Pettke, T., et al., 2011. Gold and Copper Partitioning in Magmatic-Hydrothermal Systems at 800℃ and 100 MPa. Geochimica et Cosmochimica Acta, 75(9): 2470-2482. https://doi.org/10.1016/j.gca.2011.02.012
|
Gan, T., Huang, Z.L., 2017. Platinum-Group Element and Re-Os Geochemistry of Lamprophyres in the Zhenyuan Gold Deposit, Yunnan Province, China: Implications for Petrogenesis and Mantle Evolution. Lithos, 282-283: 228-239. https://doi.org/10.1016/j.lithos.2017.03.018
|
Giuliani, A., Phillips, D., Fiorentini, M.L., et al., 2013. Mantle Oddities: A Sulphate Fluid Preserved in a MARID Xenolith from the Bultfontein Kimberlite (Kimberley, South Africa). Earth and Planetary Science Letters, 376: 74-86. https://doi.org/10.1016/j.epsl.2013.06.028
|
Goldfarb, R.J., Groves, D.I., Gardoll, S., 2001. Orogenic Gold and Geologic Time: A Global Synthesis. Ore Geology Reviews, 18(1-2): 1-75. https://doi.org/10.1016/s0169-1368(01)00016-6
|
Goldfarb, R.J., Santosh, M., 2014. The Dilemma of the Jiaodong Gold Deposits: Are They Unique? Geoscience Frontiers, 5(2): 139-153. https://doi.org/10.1016/j.gsf.2013.11.001
|
González-Jiménez, J.M., Tassara, S., Schettino, E., et al., 2020. Mineralogy of the HSE in the Subcontinental Lithospheric Mantle: An Interpretive Review. Lithos, 372-373: 105681. https://doi.org/10.1016/j.lithos.2020.105681
|
Griffin, W.L., Begg, G.C., O'Reilly, S.Y., 2013. Continental-Root Control on the Genesis of Magmatic Ore Deposits. Nature Geoscience, 6(11): 905-910. https://doi.org/10.1038/ngeo1954
|
Griffin, W.L., O'Reilly, S.Y., Afonso, J.C., et al., 2008. The Composition and Evolution of Lithospheric Mantle: A Re-Evaluation and Its Tectonic Implications. Journal of Petrology, 50(7): 1185-1204. https://doi.org/10.1093/petrology/egn033
|
Grondahl, C., Zajacz, Z., 2017. Magmatic Controls on the Genesis of Porphyry Cu-Mo-Au Deposits: The Bingham Canyon Example. Earth and Planetary Science Letters, 480: 53-65. https://doi.org/10.1016/j.epsl.2017.09.036
|
Groves, D.I., Santosh, M., Deng, J., et al., 2020. A Holistic Model for the Origin of Orogenic Gold Deposits and Its Implications for Exploration. Mineralium Deposita, 55(2): 275-292. https://doi.org/10.1007/s00126-019-00877-5
|
Groves, D.I., Santosh, M., Zhang, L., et al., 2021. Subduction: The Recycling Engine Room for Global Metallogeny. Ore Geology Reviews, 134: 104130. https://doi.org/10.1016/j.oregeorev.2021.104130
|
Groves, D.I., Zhang, L., Santosh, M., 2019. Subduction, Mantle Metasomatism, and Gold: A Dynamic and Genetic Conjunction. GSA Bulletin, 132(7-8): 1419-1426. https://doi.org/10.1130/b35379.1
|
Hanley, J.J., Pettke, T., Mungall, J.E., et al., 2005. The Solubility of Platinum and Gold in NaCl Brines at 1.5 kbar, 600 to 800℃: A Laser Ablation ICP-MS Pilot Study of Synthetic Fluid Inclusions. Geochimica et Cosmochimica Acta, 69(10): 2593-2611. https://doi.org/10.1016/j.gca.2004.11.005
|
Hao, H.D., Campbell, I.H., Arculus, R.J., et al., 2021. Using Precious Metal Probes to Quantify Mid-Ocean Ridge Magmatic Processes. Earth and Planetary Science Letters, 553: 116603. https://doi.org/10.1016/j.epsl.2020.116603
|
Harte, B., Winterburn, P.A., Gurney, J.J., 1987. Metasomatic and Enrichment Phenomena in Garnet Peridotite Facies Mantle Xenoliths from the Matsoku Kimberlite, Lesotho. In: Menzies, H.C., ed., Mantle Metasomatism. Academic Press, London, 145-249.
|
Harvey, J., Warren, J.M., Shirey, S.B., 2016. Mantle Sulfides and Their Role in Re-Os and Pb Isotope Geochronology. Reviews in Mineralogy and Geochemistry, 81(1): 579-649. https://doi.org/10.2138/rmg.2016.81.10
|
Hayden, L.A., Watson, E.B., 2007. A Diffusion Mechanism for Core-Mantle Interaction. Nature, 450: 709-711. https://doi.org/10.1038/nature06380
|
He, D.T., Liu, Y.S., Moynier, F., et al., 2020. Platinum Group Element Mobilization in the Mantle Enhanced by Recycled Sedimentary Carbonate. Earth and Planetary Science Letters, 541: 116262. https://doi.org/10.1016/j.epsl.2020.116262
|
Heinrich, C.A., 2007. Fluid-Fluid Interactions in Magmatic-Hydrothermal Ore Formation. Reviews in Mineralogy and Geochemistry, 65(1): 363-387. https://doi.org/10.2138/rmg.2007.65.11
|
Heinson, G.S., Direen, N.G., Gill, R.M., 2006. Magnetotelluric Evidence for a Deep-Crustal Mineralizing System beneath the Olympic Dam Iron Oxide Copper-Gold Deposit, Southern Australia. Geology, 34(7): 573-576. https://doi.org/10.1130/g22222.1
|
Hofmann, A., Pitcairn, I., Wilson, A., 2017. Gold Mobility during Palaeoarchaean Submarine Alteration. Earth and Planetary Science Letters, 462: 47-54. https://doi.org/10.1016/j.epsl.2017.01.008
|
Hofmann, A.W., 1997. Mantle Geochemistry: The Message from Oceanic Volcanism. Nature, 385: 219-229. https://doi.org/10.1038/385219a0
|
Holwell, D.A., Fiorentini, M., McDonald, I., et al., 2019. A Metasomatized Lithospheric Mantle Control on the Metallogenic Signature of Post-Subduction Magmatism. Nature Communications, 10: 3511. https://doi.org/10.1038/s41467-019-11065-4
|
Hong, L.B., Xu, Y.G., Zhang, L., et al., 2020. Oxidized Late Mesozoic Subcontinental Lithospheric Mantle beneath the Eastern North China Craton: A Clue to Understanding Cratonic Destruction. Gondwana Research, 81: 230-239. https://doi.org/10.1016/j.gr.2019.11.012
|
Hou, Q., Yang, X.Y., Tang, J., et al., 2021. First Discovery of Gold in Kimberlite in Xuzhou, Northern Jiangsu Province. Solid Earth Sciences, 6(2): 246-248. https://doi.org/10.1016/j.sesci.2020.08.001
|
Hou, Z.Q., Qu, X.M., Yang, Z.S., et al., 2006. Metallogenesis in Tibetan Collisional Orogenic Belt: Ⅲ. Mineralization in Post-Collisional Extension Setting. Mineral Deposits, 25(6): 629-651(in Chinese with English abstract).
|
Hou, Z.Q., Zheng, Y.C., Geng, Y.S., 2015. Metallic Refertilization of Lithosphere along Cratonic Edges and Its Control on Au, Mo and REE Ore Systems. Mineral Deposits, 34(4): 641-674(in Chinese with English abstract).
|
Hronsky, J.M.A., Groves, D.I., Loucks, R.R., et al., 2012. A Unified Model for Gold Mineralisation in Accretionary Orogens and Implications for Regional-Scale Exploration Targeting Methods. Mineralium Deposita, 47(4): 339-358. https://doi.org/10.1007/s00126-012-0402-y
|
Jégo, S., Nakamura, M., Kimura, J.I., et al., 2016. Is Gold Solubility Subject to Pressure Variations in Ascending Arc Magmas? Geochimica et Cosmochimica Acta, 188: 224-243. https://doi.org/10.1016/j.gca.2016.05.034
|
Jégo, S., Pichavant, M., 2012. Gold Solubility in Arc Magmas: Experimental Determination of the Effect of Sulfur at 1 000℃ and 0.4 GPa. Geochimica et Cosmochimica Acta, 84: 560-592. https://doi.org/10.1016/j.gca.2012.01.027
|
Jégo, S., Pichavant, M., Mavrogenes, J.A., 2010. Controls on Gold Solubility in Arc Magmas: An Experimental Study at 1 000℃ and 4 kbar. Geochimica et Cosmochimica Acta, 74(7): 2165-2189. https://doi.org/10.1016/j.gca.2010.01.012
|
Jenner, F.E., Arculus, R.J., Mavrogenes, J.A., et al., 2012. Chalcophile Element Systematics in Volcanic Glasses from the Northwestern Lau Basin. Geochemistry, Geophysics, Geosystems, 13(6): Q06014. https://doi.org/10.1029/2012gc004088
|
Jenner, F.E., O'Neill, H.S.C., 2012. Analysis of 60 Elements in 616 Ocean Floor Basaltic Glasses. Geochemistry, Geophysics, Geosystems, 13(2): Q02005. https://doi.org/10.1029/2011gc004009
|
Jenner, F.E., O'Neill, H.S.C., Arculus, R.J., et al., 2010. The Magnetite Crisis in the Evolution of Arc-Related Magmas and the Initial Concentration of Au, Ag and Cu. Journal of Petrology, 51(12): 2445-2464. https://doi.org/10.1093/petrology/egq063
|
Jugo, P.J., 2009. Sulfur Content at Sulfide Saturation in Oxidized Magmas. Geology, 37(5): 415-418. https://doi.org/10.1130/g25527a.1
|
Keays, R.R., 1995. The Role of Komatiitic and Picritic Magmatism and S-Saturation in the Formation of Ore Deposits. Lithos, 34(1-3): 1-18. https://doi.org/10.1016/0024-4937(95)90003-9
|
Kelley, K.A., Cottrell, E., 2009. Water and the Oxidation State of Subduction Zone Magmas. Science, 325(5940): 605-607. https://doi.org/10.1126/science.1174156
|
Kiseeva, E.S., Fonseca, R.O.C., Smythe, D.J., 2017. Chalcophile Elements and Sulfides in the Upper Mantle. Elements, 13(2): 111-116. https://doi.org/10.2113/gselements.13.2.111
|
Le Roux, V., Bodinier, J.L., Tommasi, A., et al., 2007. The Lherz Spinel Lherzolite: Refertilized rather than Pristine Mantle. Earth and Planetary Science Letters, 259(3/4): 599-612. https://doi.org/10.1016/j.epsl.2007.05.026
|
Lee, C.T.A., Luffi, P., Chin, E.J., et al., 2012. Copper Systematics in Arc Magmas and Implications for Crust-Mantle Differentiation. Science, 336(6077): 64-68. https://doi.org/10.1126/science.1217313
|
Li, C., Yan, J., 2021. Geochemical, Mineralogy, and Sr-Nd-Pb Isotopic Compositions of the Gold-Related Lamprophyre in the Bengbu-Wuhe Area, Southeastern North China Craton: Implications for Gold Mineralization. Ore Geology Reviews, 132: 104050. https://doi.org/10.1016/j.oregeorev.2021.104050
|
Li, J.L., Schwarzenbach, E.M., John, T., et al., 2020. Uncovering and Quantifying the Subduction Zone Sulfur Cycle from the Slab Perspective. Nature Communications, 11(1): 514. https://doi.org/10.1038/s41467-019-14110-4
|
Li, L., Santosh, M., Li, S.R., 2015. The 'Jiaodong Type' Gold Deposits: Characteristics, Origin and Prospecting. Ore Geology Reviews, 65: 589-611. https://doi.org/10.1016/j.oregeorev.2014.06.021
|
Li, X.H., Sun, X.S., 1995. Lamprophyre and Gold Mineralization: An Assessment of Observations and Theories. Geological Review, 41(3): 252-260(in Chinese with English abstract).
|
Li, Y., Audétat, A., 2012. Partitioning of V, Mn, Co, Ni, Cu, Zn, as, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between Sulfide Phases and Hydrous Basanite Melt at Upper Mantle Conditions. Earth and Planetary Science Letters, 355-356: 327-340. https://doi.org/10.1016/j.epsl.2012.08.008
|
Li, Y., Audétat, A., 2013. Gold Solubility and Partitioning between Sulfide Liquid, Monosulfide Solid Solution and Hydrous Mantle Melts: Implications for the Formation of Au-Rich Magmas and Crust-Mantle Differentiation. Geochimica et Cosmochimica Acta, 118: 247-262. https://doi.org/10.1016/j.gca.2013.05.014
|
Li, Y., Feng, L., Kiseeva, E.S., et al., 2019a. An Essential Role for Sulfur in Sulfide-Silicate Melt Partitioning of Gold and Magmatic Gold Transport at Subduction Settings. Earth and Planetary Science Letters, 528: 115850. https://doi.org/10.1016/j.epsl.2019.115850
|
Li, H.J., Wang, Q.F., Groves, D.I., et al., 2019b. Alteration of Eocene Lamprophyres in the Zhenyuan Orogenic Gold Deposit, Yunnan Province, China: Composition and Evolution of Ore Fluids. Ore Geology Reviews, 107: 1068-1083. https://doi.org/10.1016/j.oregeorev.2019.03.032
|
Liang, Y.Y., Deng, J., Liu, X.F., et al., 2019. Water Contents of Early Cretaceous Mafic Dikes in the Jiaodong Peninsula, Eastern North China Craton: Insights into an Enriched Lithospheric Mantle Source Metasomatized by Paleo-Pacific Plate Subduction-Related Fluids. The Journal of Geology, 127(3): 343-362. https://doi.org/10.1086/702648
|
Liu, J.G., Cai, R.H., Pearson, D.G., et al., 2019. Thinning and Destruction of the Lithospheric Mantle Root beneath the North China Craton: A Review. Earth-Science Reviews, 196: 102873. https://doi.org/10.1016/j.earscirev.2019.05.017
|
Liu, X.C., Xu, T., Xiong, X.L., et al., 2021. Gold Solubility in Silicate Melts and Fluids: Advances from High-Pressure and High-Temperature Experiments. Scientia Sinica (Terrae), 51(9): 1477-1488(in Chinese). doi: 10.1360/SSTe-2020-0295
|
Liu, Y.H., Wang, Z.C., Xue, D.S., et al., 2020. An Improved Analytical Protocol for the Determination of Sub-Nanogram Gold in 1-2 g Rock Samples Using GFAAS after Polyurethane Foam Pretreatment. Atomic Spectroscopy, 41(3): 131-140. https://doi.org/10.46770/as.2020.03.006
|
Lorand, J.P., Alard, O., Luguet, A., 2010. Platinum-Group Element Micronuggets and Refertilization Process in Lherz Orogenic Peridotite (Northeastern Pyrenees, France). Earth and Planetary Science Letters, 289(1-2): 298-310. https://doi.org/10.1016/j.epsl.2009.11.017
|
Lorand, J.P., Luguet, A., 2016. Chalcophile and Siderophile Elements in Mantle Rocks: Trace Elements Controlled by Trace Minerals. Reviews in Mineralogy and Geochemistry, 81(1): 441-488. https://doi.org/10.2138/rmg.2016.81.08
|
Lorand, J.P., Luguet, A., Alard, O., 2013. Platinum-Group Element Systematics and Petrogenetic Processing of the Continental Upper Mantle: A Review. Lithos, 164-167: 2-21. https://doi.org/10.1016/j.lithos.2012.08.017
|
Lorand, J.P., Pont, S., Guttierez-Narbona, R., et al., 2021. Chalcophile-Siderophile Element Systematics and Regional-Scale Magmatic Percolation in the Ronda Peridotite Massif (Spain). Lithos, 380-381: 105901. https://doi.org/10.1016/j.lithos.2020.105901
|
Luhr, J.F., 1997. Extensional Tectonics and the Diverse Primitive Volcanic Rocks in the Western Mexican Volcanic Belt. The Canadian Mineralogist, 35(2): 473-500.
|
Ma, L., Jiang, S.Y., Hofmann, A.W., et al., 2014. Lithospheric and Asthenospheric Sources of Lamprophyres in the Jiaodong Peninsula: A Consequence of Rapid Lithospheric Thinning beneath the North China Craton? Geochimica et Cosmochimica Acta, 124: 250-271. https://doi.org/10.1016/j.gca.2013.09.035
|
Maier, W.D., Barnes, S.J., Campbell, I.H., et al., 2009. Progressive Mixing of Meteoritic Veneer into the Early Earth's Deep Mantle. Nature, 460: 620-623. https://doi.org/10.1038/nature08205
|
Maier, W.D., Peltonen, P., McDonald, I., et al., 2012. The Concentration of Platinum-Group Elements and Gold in Southern African and Karelian Kimberlite-Hosted Mantle Xenoliths: Implications for the Noble Metal Content of the Earth's Mantle. Chemical Geology, 302-303: 119-135. https://doi.org/10.1016/j.chemgeo.2011.06.014
|
Mair, J.L., Farmer, G.L., Groves, D.I., et al., 2011. Petrogenesis of Postcollisional Magmatism at Scheelite Dome, Yukon, Canada: Evidence for a Lithospheric Mantle Source for Magmas Associated with Intrusion-Related Gold Systems. Economic Geology, 106(3): 451-480. https://doi.org/10.2113/econgeo.106.3.451
|
Mao, J.W., Wang, Y.T., Li, H.M., et al., 2008. The Relationship of Mantle-Derived Fluids to Gold Metallogenesis in the Jiaodong Peninsula: Evidence from D-O-C-S Isotope Systematics. Ore Geology Reviews, 33(3-4): 361-381. https://doi.org/10.1016/j.oregeorev.2007.01.003
|
Mao, J.W., Xie, G.Q., Li, X.F., et al., 2004. Mesozoic Large Scale Mineralization and Multiple Lithospheric Extension in South China. Earth Science Frontiers, 11(1): 45-55(in Chinese with English abstract).
|
Mao, J.W., Xie, G.Q., Zhang, Z.H., et al., 2005. Mesozoic Large-Scale Metallogenic Pulses in North China and Corresponding Geodynamic Settings. Acta Petrologica Sinica, 21(1): 171-190(in Chinese with English abstract).
|
Maria, A.H., Luhr, J.F., 2008. Lamprophyres, Basanites, and Basalts of the Western Mexican Volcanic Belt: Volatile Contents and a Vein-Wallrock Melting Relationship. Journal of Petrology, 49(12): 2123-2156. https://doi.org/10.1093/petrology/egn060
|
Mathez, E.A., 1976. Sulfur Solubility and Magmatic Sulfides in Submarine Basalt Glass. Journal of Geophysical Research, 81(23): 4269-4276. https://doi.org/10.1029/jb081i023p04269
|
Mavrogenes, J.A., O'Neill, H.S.C., 1999. The Relative Effects of Pressure, Temperature and Oxygen Fugacity on the Solubility of Sulfide in Mafic Magmas. Geochimica et Cosmochimica Acta, 63(7-8): 1173-1180. https://doi.org/10.1016/s0016-7037(98)00289-0
|
McDonough, W.F., Sun, S.S., 1995. The Composition of the Earth. Chemical Geology, 120(3-4): 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
|
McInnes, B.I.A., McBride, J.S., Evans, N.J., et al., 1999. Osmium Isotope Constraints on Ore Metal Recycling in Subduction Zones. Science, 286(5439): 512-516. https://doi.org/10.1126/science.286.5439.512
|
McLeish, D.F., Williams-Jones, A.E., Vasyukova, O.V., et al., 2021. Colloidal Transport and Flocculation are the Cause of the Hyperenrichment of Gold in Nature. Proceedings of the National Academy of Sciences, 118(20): e2100689118. https://doi.org/10.1073/pnas.2100689118
|
Mikucki, E.J., 1998. Hydrothermal Transport and Depositional Processes in Archean Lode-Gold Systems: A Review. Ore Geology Reviews, 13(1-5): 307-321. https://doi.org/10.1016/s0169-1368(97)00025-5
|
Mills, S.E., Tomkins, A.G., Weinberg, R.F., et al., 2015. Anomalously Silver-Rich Vein-Hosted Mineralisation in Disseminated-Style Gold Deposits, Jiaodong Gold District, China. Ore Geology Reviews, 68: 127-141. https://doi.org/10.1016/j.oregeorev.2014.12.014
|
Moncada, D., Rimstidt, J.D., Bodnar, R.J., 2019. How to Form a Giant Epithermal Precious Metal Deposit: Relationships between Fluid Flow Rate, Metal Concentration of Ore-Forming Fluids, Duration of the Ore-Forming Process, and Ore Grade and Tonnage. Ore Geology Reviews, 113: 103066. https://doi.org/10.1016/j.oregeorev.2019.103066
|
Mueller, A.G., Hall, G.C., Nemchin, A.A., et al., 2007. Archean High-Mg Monzodiorite-Syenite, Epidote Skarn, and Biotite-Sericite Gold Lodes in the Granny Smith-Wallaby District, Australia: U-Pb and Re-Os Chronometry of Two Intrusion-Related Hydrothermal Systems. Mineralium Deposita, 43(3): 337-362. https://doi.org/10.1007/s00126-007-0164-0
|
Müller, D., Groves, D.I., 2019a. Direct Associations between Potassic Igneous Rocks and Copper-Gold Deposits on Craton Margins. In: Müller, D., Groves, D.I., eds., Potassic Igneous Rocks and Associated Gold-Copper Mineralization. Mineral Resource Reviews. Springer, Cham, 255-277. https://doi.org/10.1007/978-3-319-92979-8_7
|
Müller, D., Groves, D.I., 2019b. Indirect Associations between Lamprophyres and Gold-Copper Deposits. In: Müller, D., Groves, D.I., eds., Potassic Igneous Rocks and Associated Gold-Copper Mineralization. Mineral Resource Reviews. Springer, Cham, 279-306. https://doi.org/10.1007/978-3-319-92979-8_8
|
Mungall, J.E., 2002. Roasting the Mantle: Slab Melting and the Genesis of Major Au and Au-Rich Cu Deposits. Geology, 30(10): 915. https://doi.org/10.1130/0091-7613(2002)0300915:rtmsma>2.0.co;2 doi: 10.1130/0091-7613(2002)0300915:rtmsma>2.0.co;2
|
Mungall, J.E., Brenan, J.M., 2014. Partitioning of Platinum-Group Elements and Au between Sulfide Liquid and Basalt and the Origins of Mantle-Crust Fractionation of the Chalcophile Elements. Geochimica et Cosmochimica Acta, 125: 265-289. https://doi.org/10.1016/j.gca.2013.10.002
|
Muntean, J.L., Cline, J.S., Simon, A.C., et al., 2011. Magmatic-Hydrothermal Origin of Nevada's Carlin-Type Gold Deposits. Nature Geoscience, 4(2): 122-127. https://doi.org/10.1038/ngeo1064
|
O'Reilly, S.Y., Griffin, W.L., 2013. Mantle Metasomatism. In: Harlov, D., Austrheim, H., eds., Metasomatism and the Chemical Transformation of Rock. Springer, Berlin, 471-533. https://doi.org/10.1007/978-3-642-28394-9_12
|
Park, J.W., Campbell, I.H., Arculus, R.J., 2013. Platinum-Alloy and Sulfur Saturation in an Arc-Related Basalt to Rhyolite Suite: Evidence from the Pual Ridge Lavas, the Eastern Manus Basin. Geochimica et Cosmochimica Acta, 101: 76-95. https://doi.org/10.1016/j.gca.2012.10.001
|
Park, J.W., Campbell, I.H., Chiaradia, M., et al., 2021. Crustal Magmatic Controls on the Formation of Porphyry Copper Deposits. Nature Reviews Earth & Environment, 2(8): 542-557. https://doi.org/10.1038/s43017-021-00182-8
|
Park, J.W., Campbell, I.H., Kim, J., et al., 2015. The Role of Late Sulfide Saturation in the Formation of a Cu- and Au-Rich Magma: Insights from the Platinum Group Element Geochemistry of Niuatahi-Motutahi Lavas, Tonga Rear Arc. Journal of Petrology, 56(1): 59-81. https://doi.org/10.1093/petrology/egu071
|
Patten, C., Barnes, S.J., Mathez, E.A., et al., 2013. Partition Coefficients of Chalcophile Elements between Sulfide and Silicate Melts and the Early Crystallization History of Sulfide Liquid: LA-ICP-MS Analysis of MORB Sulfide Droplets. Chemical Geology, 358: 170-188. https://doi.org/10.1016/j.chemgeo.2013.08.040
|
Peach, C.L., Mathez, E.A., Keays, R.R., 1990. Sulfide Melt-Silicate Melt Distribution Coefficients for Noble Metals and Other Chalcophile Elements as Deduced from MORB: Implications for Partial Melting. Geochimica et Cosmochimica Acta, 54(12): 3379-3389. https://doi.org/10.1016/0016-7037(90)90292-s
|
Piquer, J., Sanchez-Alfaro, P., Pérez-Flores, P., 2021. A New Model for the Optimal Structural Context for Giant Porphyry Copper Deposit Formation. Geology, 49(5): 597-601. https://doi.org/10.1130/g48287.1
|
Pitcairn, I.K., 2013. Background Concentrations of Gold in Different Rock Types. Applied Earth Science, 120(1): 31-38. https://doi.org/10.1179/1743275811y.0000000021
|
Pitcairn, I.K., Leventis, N., Beaudoin, G., et al., 2021. A Metasedimentary Source of Gold in Archean Orogenic Gold Deposits. Geology, 49(7): 862-866. https://doi.org/10.1130/g48587.1
|
Pitcairn, I.K., Warwick, P.E., Milton, J.A., et al., 2006. Method for Ultra-Low-Level Analysis of Gold in Rocks. Analytical Chemistry, 78(4): 1290-1295. https://doi.org/10.1021/ac051861z
|
Pokrovski, G.S., Akinfiev, N.N., Borisova, A.Y., et al., 2014. Gold Speciation and Transport in Geological Fluids: Insights from Experiments and Physical-Chemical Modelling. Geological Society, London, Special Publications, 402(1): 9-70. https://doi.org/10.1144/sp402.4
|
Pokrovski, G.S., Borisova, A.Y., Bychkov, A.Y., 2013. Speciation and Transport of Metals and Metalloids in Geological Vapors. Reviews in Mineralogy and Geochemistry, 76(1): 165-218. https://doi.org/10.2138/rmg.2013.76.6
|
Pokrovski, G.S., Escoda, C., Blanchard, M., et al., 2021. An Arsenic-Driven Pump for Invisible Gold in Hydrothermal Systems. Geochemical Perspectives Letters, 17: 39-44. https://doi.org/10.7185/geochemlet.2112
|
Pokrovski, G.S., Kokh, M.A., Guillaume, D., et al., 2015. Sulfur Radical Species Form Gold Deposits on Earth. Proceedings of the National Academy of Sciences of the United States of America, 112(44): 13484-13489. https://doi.org/10.1073/pnas.1506378112
|
Redwood, S.D., Rice, C.M., 1997. Petrogenesis of Miocene Basic Shoshonitic Lavas in the Bolivian Andes and Implications for Hydrothermal Gold, Silver and Tin Deposits. Journal of South American Earth Sciences, 10(3-4): 203-221. https://doi.org/10.1016/s0895-9811(97)00024-2
|
Rehkämper, M., Halliday, A.N., Fitton, J.G., et al., 1999. Ir, Ru, Pt, and Pd in Basalts and Komatiites: New Constraints for the Geochemical Behavior of the Platinum-Group Elements in the Mantle. Geochimica et Cosmochimica Acta, 63(22): 3915-3934. https://doi.org/10.1016/s0016-7037(99)00219-7
|
Rezeau, H., Jagoutz, O., 2020. The Importance of H2O in Arc Magmas for the Formation of Porphyry Cu Deposits. Ore Geology Reviews, 126: 103744. https://doi.org/10.1016/j.oregeorev.2020.103744
|
Richards, J.P., 2003. Tectono-Magmatic Precursors for Porphyry Cu-(Mo-Au) Deposit Formation. Economic Geology, 98(8): 1515-1533. http://doi.org/10.2113/gsecongeo.98.8.1515
|
Richards, J.P., 2009. Postsubduction Porphyry Cu-Au and Epithermal Au Deposits: Products of Remelting of Subduction-Modified Lithosphere. Geology, 37(3): 247-250. https://doi.org/10.1130/g25451a.1
|
Richards, J.P., 2013. Giant Ore Deposits Formed by Optimal Alignments and Combinations of Geological Processes. Nature Geoscience, 6(11): 911-916. https://doi.org/10.1038/ngeo1920
|
Richards, J.P., 2015. Tectonic, Magmatic, and Metallogenic Evolution of the Tethyan Orogen: From Subduction to Collision. Ore Geology Reviews, 70: 323-345. https://doi.org/10.1016/j.oregeorev.2014.11.009
|
Rielli, A., Tomkins, A.G., Nebel, O., et al., 2018. Sulfur Isotope and PGE Systematics of Metasomatised Mantle Wedge. Earth and Planetary Science Letters, 497: 181-192. https://doi.org/10.1016/j.epsl.2018.06.012
|
Rock, N.M.S., 1991. Nature, Origin and Evolution of Lamprophyre Melts. In: Rock, N.M.S., ed., Lamprophyres, Boston, MA, Springer US, 125-149. https://doi.org/10.1007/978-1-4615-3924-7_8
|
Rock, N.M.S., Groves, D.I., 1988. Do Lamprophyres Carry Gold as Well as Diamonds? Nature, 332: 253-255. https://doi.org/10.1038/332253a0
|
Salters, V.J.M., Stracke, A., 2004. Composition of the Depleted Mantle. Geochemistry, Geophysics, Geosystems, 5(5). https://doi.org/10.1029/2003gc000597
|
Sarah-Jane, B., 2016. Chalcophile Elements. In: White, W.M., ed., Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39193-9_220-1
|
Saunders, J.E., Pearson, N.J., O'Reilly, S.Y., et al., 2015. Sulfide Metasomatism and the Mobility of Gold in the Lithospheric Mantle. Chemical Geology, 410: 149-161. https://doi.org/10.1016/j.chemgeo.2015.06.016
|
Saunders, J.E., Pearson, N.J., O'Reilly, S.Y., et al., 2016. Gold in the Mantle: The Role of Pyroxenites. Lithos, 244: 205-217. https://doi.org/10.1016/j.lithos.2015.12.008
|
Saunders, J.E., Pearson, N.J., O'Reilly, S.Y., et al., 2018. Gold in the Mantle: A Global Assessment of Abundance and Redistribution Processes. Lithos, 322: 376-391. https://doi.org/10.1016/j.lithos.2018.10.022
|
Shen, J., Li, W.Y., Li, S.G., et al., 2019. Crust-Mantle Interactions at Different Depths in the Subduction Channel: Magnesium Isotope Records of Ultramafic Rocks from the Mantle Wedges. Earth Science, 44(12): 4102-4111(in Chinese with English abstract).
|
Secchiari, A., Gleissner, P., Li, C.H., et al., 2020. Highly Siderophile and Chalcophile Element Behaviour in Abyssal-Type and Supra-Subduction Zone Mantle: New Insights from the New Caledonia Ophiolite. Lithos, 354-355: 105338. https://doi.org/10.1016/j.lithos.2019.105338
|
Selvaraja, V., Caruso, S., Fiorentini, M.L., et al., 2017. Atmospheric Sulfur in the Orogenic Gold Deposits of the Archean Yilgarn Craton, Australia. Geology, 45(8): 691-694. https://doi.org/10.1130/g39018.1
|
Seo, J.H., Guillong, M., Heinrich, C.A., 2009. The Role of Sulfur in the Formation of Magmatic-Hydrothermal Copper-Gold Deposits. Earth and Planetary Science Letters, 282(1): 323-328. https://doi.org/10.1016/j.epsl.2009.03.036
|
Sillitoe, R.H., 2010. Porphyry Copper Systems. Economic Geology, 105(1): 3-41. https://doi.org/10.2113/gsecongeo.105.1.3
|
Simmons, S.F., Brown, K.L., 2006. Gold in Magmatic Hydrothermal Solutions and the Rapid Formation of a Giant Ore Deposit. Science, 314(5797): 288-291. https://doi.org/10.1126/science.1132866
|
Simmons, S.F., Brown, K.L., Tutolo, B.M., 2016. Hydrothermal Transport of Ag, Au, Cu, Pb, Te, Zn, and Other Metals and Metalloids in New Zealand Geothermal Systems: Spatial Patterns, Fluid-Mineral Equilibria, and Implications for Epithermal Mineralization. Economic Geology, 111(3): 589-618. https://doi.org/10.2113/econgeo.111.3.589
|
Simon, A.C., Frank, M.R., Pettke, T., et al., 2005. Gold Partitioning in Melt-Vapor-Brine Systems. Geochimica et Cosmochimica Acta, 69(13): 3321-3335. https://doi.org/10.1016/j.gca.2005.01.028
|
Simon, A.C., Pettke, T., Candela, P.A., et al., 2007. The Partitioning Behavior of As and Au in S-Free and S-Bearing Magmatic Assemblages. Geochimica et Cosmochimica Acta, 71(7): 1764-1782. https://doi.org/10.1016/j.gca.2007.01.005
|
Sisson, T.W., 2003. Native Gold in a Hawaiian Alkalic Magma. Economic Geology, 98(3): 643-648. https://doi.org/10.2113/gsecongeo.98.3.643
|
Smythe, D.J., Wood, B.J., Kiseeva, E.S., 2017. The S Content of Silicate Melts at Sulfide Saturation: New Experiments and a Model Incorporating the Effects of Sulfide Composition. American Mineralogist, 102(4): 795-803. https://doi.org/10.2138/am-2017-5800ccby
|
Sobolev, A.V., Hofmann, A.W., Sobolev, S.V., et al., 2005. An Olivine-Free Mantle Source of Hawaiian Shield Basalts. Nature, 434: 590-597. https://doi.org/10.1038/nature03411
|
Song, M.C., Cui, S.X., Jiang, H.L., 2011. Metallogenic Structural System for Jiaojia Gold Field and Jiaoxibei Gold Deposits Concentrated Areas in Shandong Province, China. Geological Bulletin of China, 30(4): 573-578(in Chinese with English abstract).
|
Song, M.C., Song, Y.X., Ding, Z.J., et al., 2018. Jiaodong Gold Deposits: Essential Characteristics and Major Controversy. Gold Science and Technology, 26(4): 406-422(in Chinese with English abstract).
|
Sullivan, N.A., Zajacz, Z., Brenan, J.M., 2018. The Solubility of Pd and Au in Hydrous Intermediate Silicate Melts: The Effect of Oxygen Fugacity and the Addition of Cl and S. Geochimica et Cosmochimica Acta, 231: 15-29. https://doi.org/10.1016/j.gca.2018.03.019
|
Sun, W., Arculus, R.J., Kamenetsky, V.S., et al., 2004. Release of Gold-Bearing Fluids in Convergent Margin Magmas Prompted by Magnetite Crystallization. Nature, 431: 975-978. https://doi.org/10.1038/nature02972
|
Sun, W.D., Huang, R.F., Li, H., et al., 2015. Porphyry Deposits and Oxidized Magmas. Ore Geology Reviews, 65: 97-131. https://doi.org/10.1016/j.oregeorev.2014.09.004
|
Tan, J., Wei, J.H., He, H.Y., et al., 2018. Noble Gases in Pyrites from the Guocheng-Liaoshang Gold Belt in the Jiaodong Province: Evidence for a Mantle Source of Gold. Chemical Geology, 480: 105-115. https://doi.org/10.1016/j.chemgeo.2017.09.027
|
Tassara, S., González-Jiménez, J.M., Reich, M., et al., 2017. Plume-Subduction Interaction Forms Large Auriferous Provinces. Nature Communications, 8(1): 843. https://doi.org/10.1038/s41467-017-00821-z
|
Tassara, S., González-Jiménez, J.M., Reich, M., et al., 2018. Highly Siderophile Elements Mobility in the Subcontinental Lithospheric Mantle beneath Southern Patagonia. Lithos, 314-315: 579-596. https://doi.org/10.1016/j.lithos.2018.06.022
|
Tassara, S., Reich, M., Konecke, B.A., et al., 2020. Unraveling the Effects of Melt-Mantle Interactions on the Gold Fertility of Magmas. Frontiers in Earth Science, 8: 29. https://doi.org/10.3389/feart.2020.00029
|
Taylor, W.R., Rock, N.M.S., Groves, D.I., et al., 1994. Geochemistry of Archean Shoshonitic Lamprophyres from the Yilgarn Block, Western Australia: Au Abundance and Association with Gold Mineralization. Applied Geochemistry, 9(2): 197-222. https://doi.org/10.1016/0883-2927(94)90007-8
|
Tomkins, A.G., 2013. On the Source of Orogenic Gold. Geology, 41(12): 1255-1256. https://doi.org/10.1130/focus122013.1
|
Ulrich, T., Günther, D., Heinrich, C.A., 1999. Gold Concentrations of Magmatic Brines and the Metal Budget of Porphyry Copper Deposits. Nature, 399: 676-679. https://doi.org/10.1038/21406
|
Varas-Reus, M.I., Garrido, C.J., Marchesi, C., et al., 2018. Genesis of Ultra-High Pressure Garnet Pyroxenites in Orogenic Peridotites and Its Bearing on the Compositional Heterogeneity of the Earth's Mantle. Geochimica et Cosmochimica Acta, 232: 303-328. https://doi.org/10.1016/j.gca.2018.04.033
|
Vikent'ev, I.V., Borisova, A.Y., Karpukhina, V.S., et al., 2012. Direct Data on the Ore Potential of Acid Magmas of the Uzel'ginskoe Ore Field (Southern Urals, Russia). Doklady Earth Sciences, 443(1): 401-405. https://doi.org/10.1134/s1028334x12030300
|
Wallace, P., Carmichael, I.S.E., 1992. Sulfur in Basaltic Magmas. Geochimica et Cosmochimica Acta, 56(5): 1863-1874. https://doi.org/10.1016/0016-7037(92)90316-b
|
Wallace, P.J., Edmonds, M., 2011. The Sulfur Budget in Magmas: Evidence from Melt Inclusions, Submarine Glasses, and Volcanic Gas Emissions. Reviews in Mineralogy and Geochemistry, 73(1): 215-246. https://doi.org/10.2138/rmg.2011.73.8
|
Wallace, P.J., Plank, T., Edmonds, M., et al., 2015. Volatiles in Magmas. In: Sigurdsson, H., ed., The Encyclopedia of Volcanoes (Second Edition). Academic Press, Amsterdam, 163-183. https://doi.org/10.1016/b978-0-12-385938-9.00007-9
|
Wang, J.T., Xiong, X.L., Chen, Y.X., et al., 2020. Redox Processes in Subduction Zones: Progress and Prospect. Scientia Sinica (Terrae), 50(12): 1799-1817(in Chinese). doi: 10.1360/SSTe-2019-0313
|
Wang, Q.F., Deng, J., Weng, W.J., et al., 2020. Cenozoic Orogenic Gold System in Tibet. Acta Petrologica Sinica, 36(5): 1315-1354, 73-77(in Chinese with English abstract).
|
Wang, Q.F., Deng, J., Zhao, H.S., et al., 2019. Review on Orogenic Gold Deposits. Earth Science, 44(6): 2155-2186 (in Chinese with English abstract).
|
Wang, X., Deng, J., Wang, Q.F., et al., 2021a. Contrast between Metamorphic and Ore-Forming Fluids in the Ailaoshan Belt, Southeastern Tibet: New Constraints on Ore-Fluids Source for Its Orogenic Gold Deposits. Ore Geology Reviews, 131: 103933. https://doi.org/10.1016/j.oregeorev.2020.103933
|
Wang, X., Wang, Z.C., Cheng, H., et al., 2020b. Early Cretaceous Lamprophyre Dyke Swarms in Jiaodong Peninsula, Eastern North China Craton, and Implications for Mantle Metasomatism Related to Subduction. Lithos, 368-369: 105593. https://doi.org/10.1016/j.lithos.2020.105593
|
Wang, X., Wang, Z.C., Cheng, H., et al., 2022. Gold Endowment of the Metasomatized Lithospheric Mantle for Giant Gold Deposits: Insights from Lamprophyre Dykes. Geochimica et Cosmochimica Acta, 316: 21-40. https://doi.org/10.1016/j.gca.2021.10.006
|
Wang, Y., Wei, B., Tan, W., et al., 2021. The Distribution, Characteristics and Fluid Sources of Lode Gold Deposits: an Overview. Scientia Sinica (Terrae), 51(9): 1457-1476(in Chinese). doi: 10.1360/SSTe-2021-0036
|
Wang, Z.C., Becker, H., 2015. Fractionation of Highly Siderophile and Chalcogen Elements during Magma Transport in the Mantle: Constraints from Pyroxenites of the Balmuccia Peridotite Massif. Geochimica et Cosmochimica Acta, 159: 244-263. https://doi.org/10.1016/j.gca.2015.03.036
|
Wang, Z.C., Cheng, H., Zong, K.Q., et al., 2020a. Metasomatized Lithospheric Mantle for Mesozoic Giant Gold Deposits in the North China Craton. Geology, 48(2): 169-173. https://doi.org/10.1130/g46662.1
|
Wang, Z.C., Xu, Z., Cheng, H., et al., 2021b. Precambrian Metamorphic Crustal Basement cannot Provide Much Gold to Form Giant Gold Deposits in the Jiaodong Peninsula, China. Precambrian Research, 354: 106045. https://doi.org/10.1016/j.precamres.2020.106045
|
Wang, Z.L., Yang, L.Q., Guo, L.N., et al., 2015. Fluid Immiscibility and Gold Deposition in the Xincheng Deposit, Jiaodong Peninsula, China: A Fluid Inclusion Study. Ore Geology Reviews, 65: 701-717. https://doi.org/10.1016/j.oregeorev.2014.06.006
|
Webber, A.P., Roberts, S., Taylor, R.N., et al., 2013. Golden Plumes: Substantial Gold Enrichment of Oceanic Crust during Ridge-Plume Interaction. Geology, 41(1): 87-90. https://doi.org/10.1130/g33301.1
|
Wei, B., Wang, C.Y., Wang, Z.C., et al., 2021. Mantle-Derived Gold Scavenged by Bismuth-(Tellurium)-Rich Melts: Evidence from the Mesozoic Wulong Gold Deposit in the North China Craton. Ore Geology Reviews, 131: 104047. https://doi.org/10.1016/j.oregeorev.2021.104047
|
Williams-Jones, A.E., Bowell, R.J., Migdisov, A.A., 2009. Gold in Solution. Elements, 5(5): 281-287. https://doi.org/10.2113/gselements.5.5.281
|
Williams-Jones, A.E., Heinrich, C.A., 2005.100th Anniversary Special Paper: Vapor Transport of Metals and the Formation of Magmatic-Hydrothermal Ore Deposits. Economic Geology, 100(7): 1287-1312. https://doi.org/10.2113/gsecongeo.100.7.1287
|
Wood, B.J., Bryndzia, L.T., Johnson, K.E., 1990. Mantle Oxidation State and Its Relationship to Tectonic Environment and Fluid Speciation. Science, 248(4953): 337-345. https://doi.org/10.1126/science.248.4953.337
|
Woodland, A.B., Girnis, A.V., Bulatov, V.K., et al., 2019. Experimental Study of Sulfur Solubility in Silicate-Carbonate Melts at 5-10.5 GPa. Chemical Geology, 505: 12-22. https://doi.org/10.1016/j.chemgeo.2018.12.008
|
Workman, R.K., Hart, S.R., 2005. Major and Trace Element Composition of the Depleted MORB Mantle (DMM). Earth and Planetary Science Letters, 231(1-2): 53-72. https://doi.org/10.1016/j.epsl.2004.12.005
|
Wu, F.Y., Yang, J.H., Xu, Y.G., et al., 2019. Destruction of the North China Craton in the Mesozoic. Annual Review of Earth and Planetary Sciences, 47(1): 173-195. https://doi.org/10.1146/annurev-earth-053018-060342
|
Xu, B., Hou, Z.Q., Griffin, W.L., et al., 2021. Recycled Volatiles Determine Fertility of Porphyry Deposits in Collisional Settings. American Mineralogist, 106(4): 656-661. https://doi.org/10.2138/am-2021-7714
|
Xu, C., Qi, L., Huang, Z.L., et al., 2008. Abundances and Significance of Platinum Group Elements in Carbonatites from China. Lithos, 105(3-4): 201-207. https://doi.org/10.1016/j.lithos.2008.03.008
|
Yang, L.Q., Deng, J., Song, M.C., et al., 2019. Structure Control on Formation and Localization of Giant Deposits: An Example of Jiaodong Gold Deposits in China. Geotectonica et Metallogenia, 43(3): 431-446(in Chinese with English abstract).
|
Yang, Z.F., Li, J., Liang, W.F., et al., 2016. On the Chemical Markers of Pyroxenite Contributions in Continental Basalts in Eastern China: Implications for Source Lithology and the Origin of Basalts. Earth-Science Reviews, 157: 18-31. https://doi.org/10.1016/j.earscirev.2016.04.001
|
Zajacz, Z., Candela, P.A., Piccoli, P.M., et al., 2013. Solubility and Partitioning Behavior of Au, Cu, Ag and Reduced S in Magmas. Geochimica et Cosmochimica Acta, 112: 288-304. https://doi.org/10.1016/j.gca.2013.02.026
|
Zajacz, Z., Seo, J.H., Candela, P.A., et al., 2010. Alkali Metals Control the Release of Gold from Volatile-Rich Magmas. Earth and Planetary Science Letters, 297(1-2): 50-56. https://doi.org/10.1016/j.epsl.2010.06.002
|
Zhai, M.G., Fan, H.R., Yang, J.H., et al., 2004. Large-Scale Cluster of Gold Deposits in East Shandong: Anorogenic Metallogenesis. Earth Science Frontiers, 11(1): 85-98(in Chinese with English abstract).
|
Zhang, Y.W., Hu, F.F., Fan, H.R., et al., 2020a. Fluid Evolution and Gold Precipitation in the Muping Gold Deposit (Jiaodong, China): Insights from In-Situ Trace Elements and Sulfur Isotope of Sulfides. Journal of Geochemical Exploration, 218: 106617. https://doi.org/10.1016/j.gexplo.2020.106617
|
Zhang, L., Weinberg, R.F., Yang, L.Q., et al., 2020b. Mesozoic Orogenic Gold Mineralization in the Jiaodong Peninsula, China: A Focused Event at 120±2 Ma during Cooling of Pregold Granite Intrusions. Economic Geology, 115(2): 415-441. https://doi.org/10.5382/econgeo.4716
|
Zhang, Z.C., Mao, J.W., Wang, F.S., et al., 2006. Native Gold and Native Copper Grains Enclosed by Olivine Phenocrysts in a Picrite Lava of the Emeishan Large Igneous Province, SW China. American Mineralogist, 91(7): 1178-1183. https://doi.org/10.2138/am.2006.1888
|
Zhao, T., Zhu, G., Lin, S.Z., et al., 2016. Indentation-Induced Tearing of a Subducting Continent: Evidence from the Tan-Lu Fault Zone, East China. Earth-Science Reviews, 152: 14-36. https://doi.org/10.1016/j.earscirev.2015.11.003
|
Zheng, Y.F., Xu, Z., Zhao, Z.F., et al., 2018. Mesozoic Mafic Magmatism in North China: Implications for Thinning and Destruction of Cratonic Lithosphere. Science China Earth Sciences, 61(4): 353-385. https://doi.org/10.1007/s11430-017-9160-3
|
Zhu, G., Lu, Y.C., Su, N., et al., 2021. Crustal Deformation and Dynamics of Early Cretaceous in the North China Craton. Science China: Earth Sciences, 51(9): 1420-1443(in Chinese).
|
Zhu, R.X., Fan, H.R., Li, J.W., et al., 2015. Decratonic Gold Deposits. Science China: Earth Sciences, 45(8): 1153-1168, 1-4(in Chinese).
|
Zhu, R.X., Sun, W.D., 2021. The Big Mantle Wedge and Decratonic Gold Deposits. Science China: Earth Sciences, ,51(9): 1444-1456(in Chinese).
|
Zhu, R.X., Xu, Y.G., Zhu, G., et al., 2012. Destruction of the North China Craton. Science China: Earth Sciences, 55(10): 1565-1587. https://doi.org/10.1007/s11430-012-4516-y
|
陈衍景, Pirajno, F., 赖勇, 等, 2004. 胶东矿集区大规模成矿时间和构造环境. 岩石学报, 20(4): 907-922. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200404013.htm
|
邓黎旭, 刘勇胜, 宗克清, 等, 2019. 地幔橄榄岩中碳酸盐熔体交代作用及其鉴定特征. 地球科学, 44(4): 1113-1127. doi: 10.3799/dqkx.2018.357
|
范宏瑞, 胡芳芳, 杨进辉, 等, 2005. 胶东中生代构造体制转折过程中流体演化和金的大规模成矿. 岩石学报, 21(5): 1317-1328. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200505000.htm
|
范宏瑞, 蓝廷广, 李兴辉, 等, 2021. 胶东金成矿系统的末端效应. 中国科学: 地球科学, 51(9): 1504-1523. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202109007.htm
|
侯增谦, 曲晓明, 杨竹森, 等, 2006. 青藏高原碰撞造山带: Ⅲ. 后碰撞伸展成矿作用. 矿床地质, 25(6): 629-651. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200604000.htm
|
侯增谦, 郑远川, 耿元生, 2015. 克拉通边缘岩石圈金属再富集与金-钼-稀土元素成矿作用. 矿床地质, 34(4): 641-674. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201504001.htm
|
李献华, 孙贤鉥, 1995. "煌斑岩"与金矿的实际观察与理论评述. 地质论评, 41(3): 252-260. doi: 10.3321/j.issn:0371-5736.1995.03.008
|
刘星成, 许婷, 熊小林, 等, 2021. 岩浆熔/流体中金的溶解度: 高温高压实验研究进展. 中国科学: 地球科学, 51(9): 1477-1488. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202109005.htm
|
毛景文, 谢桂青, 李晓峰, 等, 2004. 华南地区中生代大规模成矿作用与岩石圈多阶段伸展. 地学前缘, 11(1): 45-55. doi: 10.3321/j.issn:1005-2321.2004.01.003
|
毛景文, 谢桂青, 张作衡, 等, 2005. 中国北方中生代大规模成矿作用的期次及其地球动力学背景. 岩石学报, 21(1): 171-190. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200501018.htm
|
沈骥, 李王晔, 李曙光, 等, 2019. 俯冲隧道内不同深度的壳幔相互作用: 地幔楔超镁铁质岩的镁同位素记录. 地球科学, 44(12): 4102-4111. doi: 10.3799/dqkx.2019.286
|
宋明春, 崔书学, 姜洪利, 2011. 山东胶西北矿集区和焦家金矿田成矿构造系统. 地质通报, 30(4): 573-578. doi: 10.3969/j.issn.1671-2552.2011.04.014
|
宋明春, 宋英昕, 丁正江, 等, 2018. 胶东金矿床: 基本特征和主要争议. 黄金科学技术, 26(4): 406-422. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ201804006.htm
|
王锦团, 熊小林, 陈伊翔, 等, 2020. 俯冲带氧逸度研究: 进展和展望. 中国科学: 地球科学, 50(12): 1799-1817. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202012008.htm
|
王庆飞, 邓军, 翁伟俊, 等, 2020. 青藏高原新生代造山型金成矿系统. 岩石学报, 36(5): 1315-1354, 73-77. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202005002.htm
|
王庆飞, 邓军, 赵鹤森, 等, 2019. 造山型金矿研究进展: 兼论中国造山型金成矿作用. 地球科学, 44(6): 2155-2186. doi: 10.3799/dqkx.2019.105
|
王焰, 魏博, 谭伟, 等, 2021. 脉状金矿床的时空分布、地质特征和成矿流体来源. 中国科学: 地球科学, 51(9): 1457-1476. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202109004.htm
|
杨立强, 邓军, 宋明春, 等, 2019. 巨型矿床形成与定位的构造控制: 胶东金矿集区剖析. 大地构造与成矿学, 43(3): 431-446. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201903005.htm
|
翟明国, 范宏瑞, 杨进辉, 等, 2004. 非造山带型金矿——胶东型金矿的陆内成矿作用. 地学前缘, 11(1): 85-98. doi: 10.3321/j.issn:1005-2321.2004.01.005
|
朱光, 陆元超, 苏楠, 等, 2021. 华北克拉通早白垩世地壳变形规律与动力学. 中国科学: 地球科学, 51(9): 1420-1443. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202109002.htm
|
朱日祥, 范宏瑞, 李建威, 等, 2015. 克拉通破坏型金矿床. 中国科学: 地球科学, 45(8): 1153-1168, 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201508006.htm
|
朱日祥, 孙卫东, 2021. 大地幔楔与克拉通破坏型金矿. 中国科学: 地球科学, 51(9): 1444-1456. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202109003.htm
|