• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 6
    Jun.  2022
    Turn off MathJax
    Article Contents
    Li Jiazhen, Wu Song, Lin Yibin, Jiang Zongyang, Yi Jianzhou, Jiang Guangwu, Liu Xiaofeng, Hua Kang, Ci Qiong, Zhao Yayun, 2022. Alteration-Mineralization Style and Prospecting Potential of Cimabanshuo Porphyry Copper Deposit in Tibet. Earth Science, 47(6): 2219-2244. doi: 10.3799/dqkx.2021.229
    Citation: Li Jiazhen, Wu Song, Lin Yibin, Jiang Zongyang, Yi Jianzhou, Jiang Guangwu, Liu Xiaofeng, Hua Kang, Ci Qiong, Zhao Yayun, 2022. Alteration-Mineralization Style and Prospecting Potential of Cimabanshuo Porphyry Copper Deposit in Tibet. Earth Science, 47(6): 2219-2244. doi: 10.3799/dqkx.2021.229

    Alteration-Mineralization Style and Prospecting Potential of Cimabanshuo Porphyry Copper Deposit in Tibet

    doi: 10.3799/dqkx.2021.229
    • Received Date: 2021-09-30
    • Publish Date: 2022-06-25
    • The Cimabanshuo is a newly discovered porphyry copper deposit in the western part of the Gangdese belt in Tibet. It is located about 10 km southwest of the super-large Zhunuo porphyry copper deposit, which is surrounded by the Beimulang, Luobugangmu, and Dongshibu deposits. These deposits are an important part of the Zhunuo copper ore-concentrated district. To further clarify the prospecting potential and exploration direction of the Cimarbanshuo, a systematic zircon U-Pb geochronology analysis and zircon trace element analysis, elaborate alteration-mineralization cataloging of the drilling, and detailed petrographic observations were carried out for the deposit. The study shows that the Miocene intrusions of the main ore-forming period of the Cimabanshuo copper deposit were a composite pluton, consisting of fine-grained monzonite granite porphyry (F porphyry: 16±0.30 Ma), coarse-grained monzonite porphyry (C porphyry: 15.89±0.06 Ma), hornblende monzonite granite porphyry (H porphyry: 15.81±0.06 Ma), diorite porphyry, and monzonitic granite (15.51±0.07 Ma). Different magmas contribute variously to mineralization. The ratios of zircon Ce4+/Ce3+ (average 190) and 10 000×(Eu/Eu*)/Y (average 13) indicate that the oxygen fugacity and water content of the Miocene rocks in the Cimabanshuo are higher than those in the Zhunuo deposit. The hydrothermal evolution of the Cimabanshuo can be divided into 4 stages and 14 types of veins. According to the correspondence between alteration and mineralization at Cimabanshuo, it concludes that copper mainly precipitates in the K-silicate alteration stage, especially closely related to biotite alteration. Propylitic alteration also contributes to part of the copper and phyllic alteration stage contains the least amount of Cu. Compared with the classic alteration-mineralization zoning model of porphyry copper systems, the Cimabanshuo exhibits some abnormal characteristics, such as a strong superposition of deep K-silicate alteration by propylitic alteration and the low-temperature alteration was cutting by high-temperature veins, indicating that there are multiple stages of magma-hydrothermal processes, which provide a steady stream of thermodynamics, ore-forming materials, and ore-forming fluids for mineralization. The F porphyry is the main mineralizing intrusion, which is distributed in the northern part of the Cimabanshuo deposit.The alteration-mineralization in the north of the mining area is stronger than that in the south, and the deep development of strong propylitization alteration. In conclusion, it believes that the Cimabanshuo deposit also has great prospecting potential. The next step of the exploration should be the deeper levels and northeast direction of the mining area, focusing on the F porphyry, C porphyry, and the zones of K-silicate alteration.

       

    • loading
    • Ballard, J. R., Palin, M. J., Campbell, I. H., 2002. Relative Oxidation States of Magmas Inferred from Ce(Ⅳ)/Ce(Ⅲ) in Zircon: Application to Porphyry Copper Deposits of Northern Chile. Contributions to Mineralogy and Petrology, 144(3): 347-364. https://doi.org/10.1007/s00410-002-0402-5
      Chen, X., Zheng, Y. Y., Gao, S. B., et al., 2020. Ages and Petrogenesis of the Late Triassic Andesitic Rocks at the Luerma Porphyry Cu Deposit, Western Gangdese, and Implications for Regional Metallogeny. Gondwana Research, 85: 103-123. https://doi.org/10.1016/j.gr.2020.04.006
      Chen, X., Schertl, H. P., Hart, E., et al., 2022. Mobilization and Fractionation of Ti-Nb-Ta during Exhumation of Deeply Subducted Continental Crust. Geochimica et Cosmochimica Acta, 319: 271-295. https://doi.org/10.1016/j.gca.2021.11.024
      Chung, S. L., Liu, D, Ji, J., et al., 2003. Adakites from Continental Collision Zones: Melting of Thickened Lower Crust Beneath Southern Tibet. Geology, 31(11): 1021-1024. https://doi.org/10.1130/g19796.1
      Copeland, P., Harrison, T. M., Kidd, W. S. F., et al., 1987. Rapid Early Miocene Acceleration of Uplift in the Gangdese Belt, Xizang (Southern Tibet), and Its Bearing on Accommodation Mechanisms of the India-Asia Collision. Earth and Planetary Science Letters, 86(2-4): 240-252. https://doi.org/10.1016/0012-821x(87)90224-x
      Ding, L., Kapp, P., Wan, X. Q., 2005. Paleocene-Eocene Record of Ophiolite Obduction and Initial India-Asia Collision, South Central Tibet. Tectonics, 24(3): TC3001. https://doi.org/10.1029/2004tc001729
      Gao, S. B., Chen, X., Cheng, S. S., et al., 2020. Syn-Collisional Magmatism at the Longgen Pb-Zn Deposit, Western Nyainqentanglha Belt, Tibet: Petrogenesis and Implications for Regional Polymetallic Metallogeny. Ore Geology Reviews, 126: 103730. https://doi.org/10.1016/j.oregeorev.2020.103730
      Gao, S. B., Chen, X., Zhang, Y. C., et al., 2021. Timing and Genetic Link of Porphyry Mo and Skarn Pb-Zn Mineralization in the Chagele Deposit, Western Nyainqentanglha Belt, Tibet. Ore Geology Reviews, 129: 103929. https://doi.org/10.1016/j.oregeorev.2020.103929
      Hou, K. J., Li, Y. H., Tian, Y. R., 2009. In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS. Mineral Deposits, 28(4): 481-492(in Chinese with English abstract).
      Hou, Z. Q., Qu, X. M., Wang, S. X., et al., 2003. Re-Os Age for Molybdenite from the Gangdese Porphyry Copper Belt on Tibetan Plateau: Implication for Geodynamic Setting and Duration of the Cu Mineralization. Science in China (Series D), 33(7): 609-618(in Chinese).
      Hou, Z. Q., Yang, Z. M., Lu, Y. J., et al., 2015. A Genetic Linkage between Subduction- and Collision-Related Porphyry Cu Deposits in Continental Collision Zones. Geology, 43(3): 247-250. https://doi.org/10.1130/g36362.1
      Huang, H. X., Liu, H., Li, G. M., et al., 2019. Zircon U-Pb, Molybdenite Re-Os and Quartz Vein Rb-Sr Geochronology of the Luobuzhen Au-Ag and Hongshan Cu Deposits, Tibet, China: Implications for the Oligocene-Miocene Porphyry-Epithermal Metallogenic System. Minerals, 9(8): 476. https://doi.org/10.3390/min9080476
      Jiang, X. J., Chen, X., Gao, S. B., et al., 2020. A New Discovery of Ag-Pb-Zn Mineralization via Modern Portable Analytical Technology and Stream Sediment Data Processing Methods in Dajiacuo Area, Western Tibet (China). Journal of Earth Science, 31(4): 668-682. https://doi.org/10.1007/s12583-020-1323-9
      Li, G. M., Liu, B., Qu, W. J., et al., 2005. The Porphyry-Skarn Ore-Forming System in Gangdese Metallogenic Belt, Southern Xizang: Evidence from Molybdenite Re-Os Age of Porphyry-Type Copper Deposits and Skarn-Type Copper Polymetallic Deposits. Geotectonica et Metallogenia, 29(4): 482-490(in Chinese with English abstract).
      Lin, B., Fang, X., Wang, Y. Y., et al., 2019. Petrologic Genesis of Ore-Bearing Porphyries in Tiegelongnan Giant Cu (Au, Ag) Deposit, Tibet and Its Implications for the Dynamic of Cretaceous Mineralization, Duolong. Acta Petrologica Sinica, 35(3): 642-664(in Chinese with English abstract). doi: 10.18654/1000-0569/2019.03.03
      Liu, B. D., 2010. Uncertain Risk Analysis and Uncertain Reliability Analysis. Journal of Uncertain Systems, 4(3): 163-170.
      Lowell, J. D., Guilbert, J. M., 1970. Lateral and Vertical Alteration-Mineralization Zoning in Porphyry Ore Deposits. Economic Geology, 65(4): 373-408. https://doi.org/10.2113/gsecongeo.65.4.373
      Lu, Y. J., Loucks, R. R., Fiorentini, M., et al., 2016. Zircon Compositions as a Pathfinder for Porphyry Cu±Mo±Au Deposits. Society of Economic Geologists. Special Publications Series, 19: 329-347. https://doi.org/10.5382/sp.19.13
      Moore, J. G., Lockwood, J. P., 1973. Origin of Comb Layering and Orbicular Structure, Sierra Nevada Batholith, California. Geological Society of America Bulletin, 84(1): 1. doi: 10.1130/0016-7606(1973)84<1:OOCLAO>2.0.CO;2
      Qin, K. Z., Xia, D. X., Duo, J., et al., 2014. Qulong Porphyry-Skarn Copper-Molybdenum Deposit in Tibet. Science Publishing House, Beijing(in Chinese).
      Rees, C., Riedell, K. B., Proffett, J. M., et al., 2015. The Red Chris Porphyry Copper-Gold Deposit, Northern British Columbia, Canada: Igneous Phases, Alteration, and Controls of Mineralization. Economic Geology, 110(4): 857-888. https://doi.org/10.2113/econgeo.110.4.857
      Replumaz, A., Negredo, A. M., Villaseñor, A., et al., 2010. Indian Continental Subduction and Slab Break-off during Tertiary Collision. Terra Nova, 22(4): 290-296. https://doi.org/10.1111/j.1365-3121.2010.00945.x
      Richards, J. P., 2015. The Oxidation State, and Sulfur and Cu Contents of Arc Magmas: Implications for Metallogeny. Lithos, 233: 27-45. https://doi.org/10.1016/j.lithos.2014.12.011
      Rui, Z. Y., Hou, Z. Q., Qu, X. M., et al., 2003. Metallogenetic Epoch of Gangdese Porphyry Copper Belt and Uplift of Qinghai-Tibet Plateau. Mineral Deposits, 22(3): 217-225(in Chinese with English abstract).
      Shen, P., Hattori, K., Pan, H. D., et al., 2015. Oxidation Condition and Metal Fertility of Granitic Magmas: Zircon Trace-Element Data from Porphyry Cu Deposits in the Central Asian Orogenic Belt. Economic Geology, 110(7): 1861-1878. https://doi.org/10.2113/econgeo.110.7.1861
      Sillitoe, R. H., 2010. Porphyry Copper Systems. Economic Geology, 105(1): 3-41. https://doi.org/10.2113/gsecongeo.105.1.3
      Sláma, J., Košler, J., Condon, D. J., et al., 2008. Plešovice Zircon: A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chemical Geology, 249(1-2): 1-35. https://doi.org/10.1016/j.chemgeo.2007.11.005
      Stewart, J. P., 1983. Petrology and Geochemistry of the Intrusives Spatially Associated with the Logtung W-Mo Project, South-Central Yukon Territory (Dissertation). University of Toronto, Toronto.
      Sun, W. D., Liang, H. Y., Ling, M. X., et al., 2013. The Link between Reduced Porphyry Copper Deposits and Oxidized Magmas. Geochimica et Cosmochimica Acta, 103: 263-275. https://doi.org/10.1016/j.gca.2012.10.054
      Sun, X., Hollings, P., Lu, Y. J., 2021. Geology and Origin of the Zhunuo Porphyry Copper Deposit, Gangdese Belt, Southern Tibet. Mineralium Deposita, 56(3): 457-480. https://doi.org/10.1007/s00126-020-00970-0
      Tang, J. X., Li, F. J., Li, Z. J., et al., 2010. Time Limit for Formation of Main Geological Bodies in Xiongcun Copper-Gold Deposit, Xietongmen County, Tibet: Evidence from Zircon U-Pb Ages and Re-Os Age of Molybdenite. Mineral Deposits, 29(3): 461-475(in Chinese with English abstract).
      Wang, R., Richards, J. P., Hou, Z. Q., et al., 2014. Increasing Magmatic Oxidation State from Paleocene to Miocene in the Eastern Gangdese Belt, Tibet: Implication for Collision-Related Porphyry Cu-Mo±Au Mineralization. Economic Geology, 109(7): 1943-1965. https://doi.org/10.2113/econgeo.109.7.1943
      Wen, D. R., Liu, D. Y., Chung, S. L., et al., 2008. Zircon SHRIMP U-Pb Ages of the Gangdese Batholith and Implications for Neotethyan Subduction in Southern Tibet. Chemical Geology, 252(3-4): 191-201. https://doi.org/10.1016/j.chemgeo.2008.03.003
      Wu, S., 2016. The Super-Large Zhunuo Porphyry Cu Deposit in the Gangdese Belt, Southern Tibet: Magmatism and Mineralizationn (Dissertation). China University of Geosciences, Beijing, 45-46(in Chinese with English abstract).
      Yang, Z. M., Cooke, D. R., 2019. Porphyry Copper Deposits in China. In: Chang, Z. S., Goldfarb, R., eds., Mineral Deposits of China Society of Economic Geologists Special Publication, Untied States, 133-187.
      Yang, Z. M., Goldfarb, R., Chang, Z. S., 2016. Generation of Postcollisional Porphyry Copper Deposits in Southern Tibet Triggered by Subduction of the Indian Continental Plate. Society of Economic Geologists Special Publication, 19: 279-300.
      Yang, Z. M., Hou, Z. Q., Song, Y. C., et al., 2008. Qulong Superlarge Porphyry Cu Deposit in Tibet Geology, Alteration and Mineralization. Mineral Deposits, 27(3): 279-318(in Chinese with English abstract).
      Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211-280. https://doi.org/10.1146/annurev.earth.28.1.211
      Ying, L. J., Wang, D. H., Tang, J. X., et al., 2010. Re-Os Dating of Molybdenite from Jiama Copper Polymetallic Deposit in Tibet and Its Metallogenic Significance. Acta Petrologica Sinica, 84(8): 1165-1174(in Chinese with English abstract).
      Zhang, S., Zheng, Y. C., Huang, K. X., et al., 2012. Re-Os Dating of Molybdenite from Nuri Cu-W-Mo Deposit and Its Geological Significance. Mineral Deposits, 31(2): 337-346(in Chinese with English abstract).
      Zhao, Y. Y., Liu, X. F., Liu, Y. C., et al., 2018. Zircon U-Pb Ages and Geochemical Characteristics of Youqiumi Porphyry Pluton in Cimabanshuo Area, Tibet. Earth Science, 43(12): 4551-4565(in Chinese with English abstract).
      Zheng, Y. Y., Ci, Q., Gao, S. B., et al., 2021b. The Ag-Sn-Cu Polymetallic Minerogenetic Series and Prospecting Direction in the Western Gangdese Belt, Tibet. Earth Science Frontiers, 28(3): 379-402(in Chinese with English abstract)
      Zheng, Y. Y., Duo, J., Wang, R. J., et al., 2007a. New Advances in the Study of the Gigantic Gangdise Porphyry Copper Metallogenic Zone, Tibe. Geology in China, 34(2): 324-334(in Chinese with English abstract).
      Zheng, Y. Y., Gao, S. B., Zhang, D. Q., et al., 2006. The Discovery of the Zhunuo Porphyry Copper Deposit in Tibet and Its Significance. Earth Science Frontiers, 13(4): 233-239(in Chinese with English abstract).
      Zheng, Y. Y., Sun, X., Gao, S. B., et al., 2014. Multiple Mineralization Events at the Jiru Porphyry Copper Deposit, Southern Tibet: Implications for Eocene and Miocene Magma Sources and Resource Potential. Journal of Asian Earth Sciences, 79: 842-857. https://doi.org/10.1016/j.jseaes.2013.03.029
      Zheng, Y. Y., Sun, X., Zheng, H. T., et al., 2012. Magma Evolution of Small Intrusion and Mineralization in Gangdese, Tibet. Northwestern Geology, 45(4): 165-174(in Chinese with English abstract).
      Zheng, Y. Y., Wang, B. S., Fan, Z. H., et al., 2002. Analysis of Tectonic Evolution in the Eastern Section of the Gangdese Terrain, Tibet and the Metallogenic Potentialities of Copper Gold Polymetal Deposits. Geological Science and Technology Information, 21(2): 55-60(in Chinese with English abstract).
      Zheng, Y. Y., Wu, S., Ci, Q., et al., 2021a. Cu-Mo-Au Metallogenesis and Minerogenetic Series during Superimposed Orogenesis Process in Gangdese. Earth Science, 46(6): 1909-1940(in Chinese with English abstract).
      Zheng, Y. Y., Zhang, G. Y., Gao, S. B., et al., 2008. Significance of the Discovery of the Sharang Porphyry Molybdenum Deposit in Tibet and Its Diagenesis and Mineralization Age Constraints. Proceedings of the Ninth National Mineral Deposit Conference. Geological Publishing House, Beijing, 674-676(in Chinese)
      Zheng, Y. Y., Zhang, G. Y., Xu, R. K., et al., 2007b. Constraints on Diagenesis and Mineralization of the Zhunuo Porphyry Copper Deposit in Gangdese, Tibet. Chinese Science Bulletin, 52(21): 2542-2548(in Chinese). doi: 10.1360/csb2007-52-21-2542
      Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2012. Origin and Paleozoic Tectonic Evolution of the Lhasa Terrane. Geological Journal of China Universities, 18(1): 1-15(in Chinese with English abstract).
      侯可军, 李延河, 田有荣, 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术. 矿床地质, 28(4): 481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010
      侯增谦, 曲晓明, 王淑贤, 等, 2003. 西藏高原冈底斯斑岩铜矿带辉钼矿Re-Os年龄: 成矿作用时限与动力学背景应用. 中国科学(D辑), 33(7): 609-618. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200307000.htm
      李光明, 刘波, 屈文俊, 等, 2005. 西藏冈底斯成矿带的斑岩-矽卡岩成矿系统: 来自斑岩矿床和矽卡岩型铜多金属矿床的Re-Os同位素年龄证据. 大地构造与成矿学, 29(4): 482-490. doi: 10.3969/j.issn.1001-1552.2005.04.008
      林彬, 方向, 王艺云, 等, 2019. 西藏铁格隆南超大型铜(金、银)矿含矿斑岩岩石成因及其对多龙地区早白垩世成矿动力学机制的启示. 岩石学报, 35(3): 642-664. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201903003.htm
      秦克章, 夏代祥, 多吉, 等, 2014. 西藏驱龙斑岩-矽卡岩铜钼矿床. 北京: 科学出版社.
      芮宗瑶, 侯增谦, 曲晓明, 等, 2003. 冈底斯斑岩铜矿成矿时代及青藏高原隆升. 矿床地质, 22(3): 217-225. doi: 10.3969/j.issn.0258-7106.2003.03.001
      唐菊兴, 黎风佶, 李志军, 等, 2010. 西藏谢通门县雄村铜金矿主要地质体形成的时限: 锆石U-Pb、辉钼矿Re-Os年龄的证据. 矿床地质, 29(3): 461-475. doi: 10.3969/j.issn.0258-7106.2010.03.008
      吴松, 2016. 西藏冈底斯朱诺超大型斑岩铜矿床: 岩浆与成矿(博士学位论文). 北京: 中国地质大学, 45-46.
      杨志明, 侯增谦, 宋玉财, 等, 2008. 西藏驱龙超大型斑岩铜矿床: 地质、蚀变与成矿. 矿床地质. 27(3): 279-318. doi: 10.3969/j.issn.0258-7106.2008.03.002
      应立娟, 王登红, 唐菊兴, 等, 2010. 西藏甲玛铜多金属矿辉钼矿Re-Os定年及其成矿意义. 地质学报, 84(8): 1165-1174. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201008010.htm
      张松, 郑远川, 黄克贤, 等, 2012. 西藏努日矽卡岩型铜钨钼矿辉钼矿Re-Os定年及其地质意义. 矿床地质, 31(2): 337-346. doi: 10.3969/j.issn.0258-7106.2012.02.013
      赵亚云, 刘晓峰, 刘远超, 等, 2018. 西藏次玛班硕地区由秋米斑岩体锆石U-Pb年龄、地球化学特征. 地球科学, 43(12): 4551-4565. doi: 10.3799/dqkx.2018.118
      郑有业, 吴松, 次琼, 等, 2021a. 冈底斯复合造山带铜钼金多金属成矿作用与成矿系列. 地球科学, 46(6): 1909-1940. doi: 10.3799/dqkx.2020.392
      郑有业, 次琼, 高顺宝, 等, 2021b. 西藏冈底斯西段银锡铜多金属成矿系列与找矿方向. 地学前缘, 28(3): 379-402. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202103033.htm
      郑有业, 多吉, 王瑞江, 等, 2007a. 西藏冈底斯巨型斑岩铜矿带勘查研究最新进展. 中国地质, 34(2): 324-334. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200702015.htm
      郑有业, 张刚阳, 许荣科, 等, 2007b. 西藏冈底斯朱诺斑岩铜矿床成岩成矿时代约束. 科学通报, 52(21): 2542-2548. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200721014.htm
      郑有业, 高顺宝, 张大全, 等, 2006. 西藏朱诺斑岩铜矿床发现的重大意义及启示. 地学前缘, 13(4): 233-239. doi: 10.3321/j.issn:1005-2321.2006.04.021
      郑有业, 孙祥, 郑海涛, 等, 2012. 西藏冈底斯小斑岩体演化与成矿. 西北地质, 18(3): 143-148 https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201204019.htm
      郑有业, 王保生, 樊子珲, 等, 2002. 西藏冈底斯东段构造演化及铜金多金属成矿潜力分析. 地质科技情报, 21(2): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200202013.htm
      郑有业, 张刚阳, 高顺宝, 等, 2008. 西藏沙让斑岩型钼矿床的发现意义及成岩成矿时代约束. 第九届全国矿床会议论文集. 北京: 地质出版社, 674-676.
      朱弟成, 赵志丹, 牛耀龄, 等, 2012. 拉萨地体的起源和古生代构造演化. 高校地质学报, 18(1): 1-15. doi: 10.3969/j.issn.1006-7493.2012.01.001
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(17)  / Tables(3)

      Article views (1923) PDF downloads(100) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return