• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 6
    Jun.  2022
    Turn off MathJax
    Article Contents
    Chen Hao, Zheng Youye, Yu Zezhang, Lin Yibin, Yi Jianzhou, Jiang Zongyang, Tian Menghu, Pang Bei, 2022. Petrogenesis and Prospecting Significance of Ore-Bearing Rocks in Dajiacuo Silver Polymetallic Deposit, Tibet. Earth Science, 47(6): 2199-2218. doi: 10.3799/dqkx.2021.230
    Citation: Chen Hao, Zheng Youye, Yu Zezhang, Lin Yibin, Yi Jianzhou, Jiang Zongyang, Tian Menghu, Pang Bei, 2022. Petrogenesis and Prospecting Significance of Ore-Bearing Rocks in Dajiacuo Silver Polymetallic Deposit, Tibet. Earth Science, 47(6): 2199-2218. doi: 10.3799/dqkx.2021.230

    Petrogenesis and Prospecting Significance of Ore-Bearing Rocks in Dajiacuo Silver Polymetallic Deposit, Tibet

    doi: 10.3799/dqkx.2021.230
    • Received Date: 2021-09-28
    • Publish Date: 2022-06-25
    • Dajiacuo silver polymetallic deposit is the firstly and newly discovered deposit dominated by silver in the western Gangdese metallogenic belt. In order to find out the time of diagenesis and mineralization, genesis of ore-bearing rocks and metallogenic significance of the deposit, zircon U-Pb chronology, trace elements and Hf isotopes, whole rock geochemistry and molybdenite Re-Os chronology of the ore-bearing (sub-volcanic) volcanic rocks (rhyolitic crystal tuff and rhyolitic porphyry) exposed in the mine area are analyzed in this paper. The results show that the ore-bearing (sub-volcanic) volcanic rocks were formed at 66.6-67.4 Ma, and the late molybdenite isotopic Re-Os model age was 61.0±0.8 Ma. Combined with the mineralization characteristics of ore-bearing geological bodies and the interpenetration relationship between quartz-pyrite and molybdenite veins and ore-bearing rhyolite porphyry etc., it is confirmed that Dajiacuo has two stages of mineralization dominated by the high silicified (sub-volcanic) volcanic rock type and skarn type silver-polymetallic mineralization in the early stage and the quartz vein-type silver-polymetallic mineralization in the late stage. It has a metallogenic time limited of 66.6-61.0 Ma, forming the epithermal cryogenic metallogenic system related to the post-volcanic hydrothermal period. The geochemical data of the (sub-volcanic) volcanic rocks indicate that they belong to the high-K series to shoshonite series with metaluminous to peraluminous, enriched in LREE and large ion lithophile elements (K, Rb, Pb), and depleted in HREE and high field strength elements (Nb, Ta, Ti). The average temperature of zircon is 712 ℃, the εHf(t) values are strongly negative (-16.5 to -3.6) and the TDMC is 1.2-2.1 Ga. The geochemical characteristics indicate that the ore-bearing rocks were typical S-type granite, which were generated from the partial melting of the Paleo-Mesoproterozoic Lhasa crystallization basement. Their characteristics are consistent with those of the ore-forming magmatic rock associated with the Ag-Pb-Zn deposits in the central Lhasa subterrane, but are obvious different with erupted Ⅰ-type granite related copper polymetallic mineralization in the south Lhasa subterrane. It is revealed that the south Lhasa subterrane has the same metallogenic potential as the central Lhasa subterrane related to S-type granites and has great theoretical and practical significance to enrich the mineralization types of the south Lhasa subterrane and promote the further exploration of this type deposits.

       

    • loading
    • Blevin, P. L., 2004. Redox and Compositional Parameters for Interpreting the Granitoid Metallogeny of Eastern Australia: Implications for Gold-Rich Ore Systems. Resource Geology, 54(3): 241-252. https://doi.org/10.1111/j.1751-3928.2004.tb00205.x
      Chen, X., Zheng, Y. Y., Gao, S. B., et al., 2020. Ages and Petrogenesis of the Late Triassic Andesitic Rocks at the Luerma Porphyry Cu Deposit, Western Gangdese, and Implications for Regional Metallogeny. Gondwana Research, 85: 103-123. https://doi.org/10.1016/j.gr.2020.04.006
      Chu, N. C., Taylor, R. N., Chavagnac, V., et al., 2002. Hf Isotope Ratio Analysis Using Multi-Collector Inductively Coupled Plasma Mass Spectrometry: An Evaluation of Isobaric Interference Corrections. Journal of Analytical Atomic Spectrometry, 17(12): 1567-1574. https://doi.org/10.1039/b206707b
      Dilles, J. H., Kent, A. J. R., Wooden, J. L., et al., 2015. Zircon Compositional Evidence for Sulfur-Degassing from Ore-Forming Arc Magmas. Economic Geology, 110(1): 241-251. https://doi.org/10.2113/econgeo.110.1.241
      Dou, X. F., Chen, X., Zheng, Y. Y., et al., 2020. The Newly Discovered Cambrian Gabbro-Diorite in Bange, Tibet and Their Tectonic Implications. Earth Science, 45(6): 2091-2102(in Chinese with English abstract).
      Du, A. D., Qu, W. J., Li, C., et al., 2009. A Review on the Development of Re-Os Isotopic Dating Methods and Techniques. Rock and Mineral Analysis, 28(3): 288-304(in Chinese with English abstract).
      Ferry, J. M., Watson, E. B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154(4): 429-437. https://doi.org/10.1007/s00410-007-0201-0
      Fu, Y, G., Hu, G, Y., Tang, J, X., et al., 2017. Low-Sulfidation Epithermal Ag-Pb-Zn Deposit in Sinongduo, Tibet: Tracer Application of Si-H-O Stable Isotope Geochemistry. Acta Geologica Sinica, 91(4): 836-848(in Chinese with English abstract).
      Gao, S. B., Chen, X., Cheng, S. S., et al., 2020. Syn-Collisional Magmatism at the Longgen Pb-Zn Deposit, Western Nyainqentanglha Belt, Tibet: Petrogenesis and Implications for Regional Polymetallic Metallogeny. Ore Geology Reviews, 126: 103730. https://doi.org/10.1016/j.oregeorev.2020.103730
      Gao, S. B., Chen, X., Zhang, Y. C., et al., 2021. Timing and Genetic Link of Porphyry Mo and Skarn Pb-Zn Mineralization in the Chagele Deposit, Western Nyainqentanglha Belt, Tibet. Ore Geology Reviews, 129: 103929. https://doi.org/10.1016/j.oregeorev.2020.103929
      Gao, S. B., Zheng, Y. Y., Jiang, X. J., et al., 2020. Discovery, Genesis and Significances of First Siver-Tin Polymetal Deposit in Western Gangdese Belt. Earth Science, 45(12): 4463-4480(in Chinese with English abstract).
      Gao, S. B., Zheng, Y. Y., Tian, K., et al., 2021. Geochronology of Magmatic Intrusions and Mineralization of Lunggar Iron Deposit in Tibet and Its Implications for Regional Multi-Stage Iron Mineralization: Geochemistry, Zircon U-Pb and Phlogopite Ar-Ar Isotopic Dating Constraints. Earth Science, 46(6): 1941-1959(in Chinese with English abstract).
      Gao, S. B., Zheng, Y. Y., Tian, L. M., et al., 2012. Geochronology of Magmatic Intrusions and Mineralization of Chagele Copper-Lead-Zinc Deposit in Tibet and Its Implications. Earth Science, 37(3): 507-514(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2012.057
      Hou, Z. Q., Duan, L. F., Lu, Y. J., et al., 2015. Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6): 1541-1575. https://doi.org/10.2113/econgeo.110.6.1541
      Ji, W. Q., Wu, F. Y., Chung, S. L., et al., 2009. Zircon U-Pb Geochronology and Hf Isotopic Constraints on Petrogenesis of the Gangdese Batholith, Southern Tibet. Chemical Geology, 262(3-4): 229-245. https://doi.org/10.1016/j.chemgeo.2009.01.020
      Ji, X. H., 2013. Study on Geology, Geochemistry and Genesis of Narusongduo Lead-Zinc Deposit, Tibet (Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).
      Jiang, J. S., 2018. Genesis of Polymetallic Deposits and Propspecting Potential in the Linzizong Area, Western Gangdese Belt, Tibet (Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract).
      Jiang, X. J., Chen, X., Gao, S. B., et al., 2020. A New Discovery of Ag-Pb-Zn Mineralization via Modern Portable Analytical Technology and Stream Sediment Data Processing Methods in Dajiacuo Area, Western Tibet (China). Journal of Earth Science, 31(4): 668-682. https://doi.org/10.1007/s12583-020-1323-9
      Jung, S., Pfänder, J. A., 2007. Source Composition and Melting Temperatures of Orogenic Granitoids: Constraints from CaO/Na2O, Al2O3/TiO2 and Accessory Mineral Saturation Thermometry. European Journal of Mineralogy, 19(6): 859-870. https://doi.org/10.1127/0935-1221/2007/0019-1774
      Kemp, A. I. S., Hawkesworth, C. J., Foster, G. L., et al., 2007. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon. Science, 315(5814): 980-983. https://doi.org/10.1126/science.1136154
      Li, G. M., Pan, G. T., Wang, G. M., et al., 2004. Evaluation and Prospecting Value of Mineral Resources in Gangdise Metallogenic Belt, Tibet, China. Journal of Chengdu University of Technology (Science & Technology Edition), 31(1): 22-27(in Chinese with English abstract).
      Liu, J., Zheng, Y. Y., Gao, S. B., et al., 2019. Zircon U-Pb Dating, Geochemistry, and Sr-Nd-Pb-Hf Isotopes of the Subvolcanic Intrusion from Beina Pb-Zn-(Ag) Deposit in the Southern Lhasa Terrane, Tibet: Implications for Petrogenesis and Mineralization. Geological Journal, 54(4): 2064-2083. https://doi.org/10.1002/gj.3284
      Liu, H., Huang, H. X., Zhang, L. K., et al., 2021. Luerma, a Newly Discovered Late Triassic Porphyry Copper-Gold Ore-Spot in the Western Gangdise Metallogenic Belt, Tibet. Sedimentary Geology and Tethyan Geology, 41(4): 599-611(in Chinese with English abstract).
      Liu, Y. S., Zong, K. Q., Kelemen, P. B., et al., 2008. Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole: Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates. Chemical Geology, 247(1-2): 133-153. https://doi.org/10.1016/j.chemgeo.2007.10.016
      Lu, Y. F., 2004. GeoKit: A Geochemical Toolkit for Microsoft Excel. Geochimica, 33(5): 28-33(in Chinese with English abstract).
      Lu, Y. J., Loucks, R. R., Fiorentini, M. L., et al., 2015. Fluid Flux Melting Generated Postcollisional High Sr/Y Copper Ore-Forming Water-Rich Magmas in Tibet. Geology, 43(7): 583-586. https://doi.org/10.1130/g36734.1
      Lei, W. Y., Shi, G. H., Liu, Y. X., 2013. Research Progress on Trace Element Characteristics of Zircons of Different Origins. Earth Science Frontiers, 20 (4): 273-284(in Chinese with English abstract).
      Li, Y., Audétat, A., 2015. Effects of Temperature, Silicate Melt Composition, and Oxygen Fugacity on the Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between Sulfide Phases and Silicate Melt. Geochimica et Cosmochimica Acta, 162: 25-45. https://doi.org/10.1016/j.gca.2015.04.036
      Ma, W., Yang, Z. S., Hou, Z. Q., et al., 2015. Zircon U-Pb Dating and Geochemical Characteristics of Metallogenetic Rock from the Lietinggang-Leqingla Fe-Cu-Pb-Zn Deposit in Tibet. Acta Geologica Sinica, 89(9): 1655-1672(in Chinese with English abstract).
      Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)1010635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)1010635:tdog>2.3.co;2
      Mao, J. W., Xie, G. Q., Bierlein, F., et al., 2008. Tectonic Implications from Re-Os Dating of Mesozoic Molybdenum Deposits in the East Qinling-Dabie Orogenic Belt. Geochimica et Cosmochimica Acta, 72(18): 4607-4626. https://doi.org/10.1016/j.gca.2008.06.027
      Mao, J. W., Zhang, Z. C., Zhang, Z. H., et al., 1999. Re-Os Isotopic Dating of Molybdenites in the Xiaoliugou W (Mo) Deposit in the Northern Qilian Mountains and Its Geological Significance. Geochimica et Cosmochimica Acta, 63(11-12): 1815-1818. https://doi.org/10.1016/s0016-7037(99)00165-9
      Meinert, L. D., Dipple, G. M., Nicolescuet, S., 2005. Wold Skarn Deposits. In: Hedenquist, J. W., Thompson, J. F. H., Goldfarb, R. J., eds., Economic Geology, 100th Anniversary Volume. Society of Economic Geologists, U. S. A., 299-336. https://doi.org/10.5382/av100
      Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      Mo, X. X., Niu, Y. L., Dong, G. C., et al., 2008. Contribution of Syncollisional Felsic Magmatism to Continental Crust Growth: A Case Study of the Paleogene Linzizong Volcanic Succession in Southern Tibet. Chemical Geology, 250(1-4): 49-67. https://doi.org/10.1016/j.chemgeo.2008.02.003
      Robb, M. S., Taylor, B., Goodliffe, A. M., 2005. Re-Examination of the Magnetic Lineations of the Gascoyne and Cuvier Abyssal Plains, off NW Australia. Geophysical Journal International, 163(1): 42-55. https://doi.org/10.1111/j.1365-246x.2005.02727.x
      Roberts, M. P., Clemens, J. D., 1993. Origin of High-Potassium, Talc-Alkaline, I-Type Granitoids. Geology, 21(9): 825. https://doi.org/10.1130/0091-7613(1993)0210825:oohpta>2.3.co;2 doi: 10.1130/0091-7613(1993)0210825:oohpta>2.3.co;2
      Rudnick, R. L., Gao, S., 2014. Composition of the Continental Crust. Treatise on Geochemistry (Second Edition), 4: 1-51. https://doi.org/10.1016/b978-0-08-095975-7.00301-6
      Selby, D., Creaser, R. A., 2004. Macroscale NTIMS and Microscale LA-MC-ICP-MS Re-Os Isotopic Analysis of Molybdenite: Testing Spatial Restrictions for Reliable Re-Os Age Determinations, and Implications for the Decoupling of Re and Os within Molybdenite. Geochimica et Cosmochimica Acta, 68(19): 3897-3908. https://doi.org/10.1016/j.gca.2004.03.022
      Selby, D., Creaser, R. A., Stein, H. J., et al., 2007. Assessment of the 187Re Decay Constant by Cross Calibration of Re-Os Molybdenite and U-Pb Zircon Chronometers in Magmatic Ore Systems. Geochimica et Cosmochimica Acta, 71(8): 1999-2013. https://doi.org/10.1016/j.gca.2007.01.008
      Sillitoe, R. H., 2010. Porphyry Copper Systems. Economic Geology, 105(1): 3-41. https://doi.org/10.2113/gsecongeo.105.1.3
      Smythe, D. J., Brenan, J. M., 2016. Magmatic Oxygen Fugacity Estimated Using Zircon-Melt Partitioning of Cerium. Earth and Planetary Science Letters, 453: 260-266. https://doi.org/10.1016/j.epsl.2016.08.013
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Sun, W. D., Huang, R. F., Li, H., et al., 2015. Porphyry Deposits and Oxidized Magmas. Ore Geology Reviews, 65: 97-131. https://doi.org/10.1016/j.oregeorev.2014.09.004
      Palinkaš, S., Peltekovski, Z., Tasev, G., et al., 2018. The Role of Magmatic and Hydrothermal Fluids in the Formation of the Sasa Pb-Zn-Ag Skarn Deposit, Republic of Macedonia. Geosciences, 8(12): 444. https://doi.org/10.3390/geosciences8120444
      Trail, D., Watson, E. B., Tailby, N. D., 2011. The Oxidation State of Hadean Magmas and Implications for Early Earth's Atmosphere. Nature, 480: 79-82. https://doi.org/10.1038/nature10655
      Wang, R., Richards, J. P., Hou, Z. Q., et al., 2014a. Increasing Magmatic Oxidation State from Paleocene to Miocene in the Eastern Gangdese Belt, Tibet: Implication for Collision-Related Porphyry Cu-Mo±Au Mineralization. Economic Geology, 109(7): 1943-1965. https://doi.org/10.2113/econgeo.109.7.1943
      Wang, R., Richards, J. P., Hou, Z., et al., 2014b. Increased Magmatic Water Content: The Key to Oligo-Miocene Porphyry Cu-Mo Au Formation in the Eastern Gangdese Belt, Tibet. Economic Geology, 109(5): 1315-1339. https://doi.org/10.2113/econgeo.109.5.1315
      Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202
      Wu, G. B., Liu, J. M., Zeng, Q. D., et al., 2014. Occurrences of Silver in the Shuangjianzishan Pb-Zn-Ag Deposit and Its Implications for Mineral Processing. Earth Science Frontiers, 21(5): 105-115(in Chinese with English abstract).
      Wu, S., Zheng, Y. Y., Sun, X., 2016. Subduction Metasomatism and Collision-Related Metamorphic Dehydration Controls on the Fertility of Porphyry Copper Ore-Forming High Sr/Y Magma in Tibet. Ore Geology Reviews, 73: 83-103. https://doi.org/10.1016/j.oregeorev.2015.10.023
      Wu, Y. B., Zheng, Y. F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(16): 1589-1604(in Chinese). doi: 10.1360/csb2004-49-16-1589
      Xu, J., 2017. Metallogenic Mechanism and Model of the Paleogene Fe-Cu-Pb-Zn Skarn Deposits in Nyainqentanglha, Tibet (Dissertation). China University of Geosciences, Wuhan, 68-174(in Chinese with English abstract).
      Zheng, Y. Y., Ci, Q., Gao, S. B., et al., 2021a. The Ag-Sn-Cu Polymetallic Minerogenetic Series and Prospecting Direction in the Western Gangdese Belt, Tibet. Earth Science Frontiers, 28(3): 379-402(in Chinese with English abstract).
      Zheng, Y. Y., Wu, S., Ci, Q., et al., 2021b. Cu-Mo-Au Metallogenesis and Minerogenetic Series during Superimposed Orogenesis Process in Gangdese. Earth Science, 46(6): 1909-1940(in Chinese with English abstract).
      Zheng, Y. Y., Sun, X., Gao, S. B., et al., 2015. Metallogenesis and the Minerogenetic Series in the Gangdese Polymetallic Copper Belt. Journal of Asian Earth Sciences, 103: 23-39. https://doi.org/10.1016/j.jseaes.2014.11.036
      Zheng, Y. Y., Sun, X., Tian, L. M., et al., 2014. Mineralization, Deposit Type and Metallogenic Age of the Gold Antimony Polymetallic Belt in the Eastern Part of North Himalayan. Geotectonica et Metallogenia, 38(1): 108-118(in Chinese with English abstract).
      Zhu, D. C., Zhao, Z. D., Niu, Y., et al., 2011. The Lhasa Terrane: Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1-2): 241-255. https://doi.org/10.1016/j.epsl.2010.11.005
      Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429-1454. https://doi.org/10.1016/j.gr.2012.02.002
      Zou, X. Y., Qin, K. Z., Han, X. L., et al., 2019. Insight into Zircon REE Oxy-Barometers: A Lattice Strain Model Perspective. Earth and Planetary Science Letters, 506: 87-96. https://doi.org/10.1016/j.epsl.2018.10.031
      豆孝芳, 陈鑫, 郑有业, 等, 2020. 西藏班戈寒武纪辉长闪长岩体的发现及其构造意义. 地球科学, 45(6): 2091-2102. doi: 10.3799/dqkx.2019.247
      杜安道, 屈文俊, 李超, 等, 2009. 铼-锇同位素定年方法及分析测试技术的进展. 岩矿测试, 28(3): 288-304. doi: 10.3969/j.issn.0254-5357.2009.03.019
      付燕刚, 胡古月, 唐菊兴, 等, 2017. 西藏斯弄多低硫化型浅成低温热液Ag-Pb-Zn矿床: Si-H-O同位素的示踪应用. 地质学报, 91(4): 836-848. doi: 10.3969/j.issn.0001-5717.2017.04.010
      高顺宝, 郑有业, 姜晓佳, 等, 2020. 冈底斯西段首例银锡多金属矿床的发现、成因及意义. 地球科学, 45(12): 4463-4480. doi: 10.3799/dqkx.2020.262
      高顺宝, 郑有业, 田坎, 等, 2021. 西藏隆格尔铁矿床成岩成矿时代及对区域多期铁成矿作用的启示: 地球化学、锆石U-Pb及金云母Ar-Ar同位素定年约束. 地球科学, 46(6): 1941-1959. doi: 10.3799/dqkx.2020.216
      高顺宝, 郑有业, 田立明, 等, 2012. 西藏查个勒铜铅锌矿成岩成矿时代及意义. 地球科学, 37(3): 507-514. doi: 10.3799/dqkx.2012.057
      纪现华, 2013. 西藏纳如松多铅锌矿床地质地球化学特征与成因机制研究(硕士学位论文). 北京: 中国地质大学.
      姜军胜, 2018. 冈底斯西段林子宗群火山岩区多金属矿床成因及找矿潜力(博士学位论文). 武汉: 中国地质大学.
      李光明, 潘桂棠, 王高明, 等, 2004. 西藏冈底斯成矿带矿产资源远景评价与展望. 成都理工大学学报(自然科学版), 31(1): 22-27. doi: 10.3969/j.issn.1671-9727.2004.01.004
      刘洪, 黄瀚霄, 张林奎, 等, 2021. 西藏冈底斯成矿带西段鲁尔玛晚三叠世斑岩型铜(金)矿点的发现及意义. 沉积与特提斯地质, 41(4): 599-611. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD202104010.htm
      路远发, 2004. GeoKit: 一个用VBA构建的地球化学工具软件包. 地球化学, 33(5): 28-33. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200405003.htm
      雷玮琰, 施光海, 刘迎新, 2013. 不同成因锆石的微量元素特征研究进展. 地学前缘, 20(4): 273-284. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201304028.htm
      马旺, 杨竹森, 侯增谦, 等, 2015. 西藏列廷冈-勒青拉Fe-Cu-Pb-Zn矿区成矿岩体锆石U-Pb年代学与岩石地球化学特征. 地质学报, 89(9): 1655-1672. doi: 10.3969/j.issn.0001-5717.2015.09.009
      吴冠斌, 刘建明, 曾庆栋, 等, 2014. 内蒙古双尖子山铅锌银矿床银的赋存状态及其指示意义. 地学前缘, 21(5): 105-115. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201405012.htm
      吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
      徐净, 2017. 西藏念青唐古拉古近纪矽卡岩型铁铜铅锌矿床成因机制与成矿模式(博士学位论文). 武汉: 中国地质大学, 68-174.
      郑有业, 孙祥, 田立明, 等, 2014. 北喜马拉雅东段金锑多金属成矿作用、矿床类型与成矿时代. 大地构造与成矿学, 38(1): 108-118. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201401010.htm
      郑有业, 次琼, 高顺宝, 等, 2021a. 西藏冈底斯西段银锡铜多金属成矿系列与找矿方向. 地学前缘, 28(3): 379-402. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202103033.htm
      郑有业, 吴松, 次琼, 等, 2021b. 冈底斯复合造山带铜钼金多金属成矿作用与成矿系列. 地球科学, 46(6): 1909-1940. doi: 10.3799/dqkx.2020.392
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(4)

      Article views (847) PDF downloads(70) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return