• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 9
    Sep.  2022
    Turn off MathJax
    Article Contents
    Ding Leilei, Mao Qigui, Wang Yuwang, Guan Yuchun, Li Tingting, 2022. Comparison on the Characteristics of Cassiterite-Bearing and Barren Granites in the Beidashan Region, Southern Great Xing'an Range. Earth Science, 47(9): 3371-3388. doi: 10.3799/dqkx.2021.235
    Citation: Ding Leilei, Mao Qigui, Wang Yuwang, Guan Yuchun, Li Tingting, 2022. Comparison on the Characteristics of Cassiterite-Bearing and Barren Granites in the Beidashan Region, Southern Great Xing'an Range. Earth Science, 47(9): 3371-3388. doi: 10.3799/dqkx.2021.235

    Comparison on the Characteristics of Cassiterite-Bearing and Barren Granites in the Beidashan Region, Southern Great Xing'an Range

    doi: 10.3799/dqkx.2021.235
    • Received Date: 2021-11-29
    • Publish Date: 2022-09-25
    • Recently, many tin polymetallic deposits related to Cretaceous granite have been discovered in the southern part of the Great Xing'an Range. However, not all granites of this period are associated with tin deposits. To obtain a better understanding of the formation conditions of granite associated tin deposits, (Method) in this paper, the cassiterite U-Pb age, zircon U-Pb age, whole rock geochemistry and mineral chemistry analysis of the cassiterite-bearing granites (the Mopanshan area) and barren granites (the Kulongshan area) in the Beidashan pluton were carried out. The geochronology, geochemistry and physical-chemical conditions of magma evolution were compared. The U-Pb weighted average zircon ages of the Kulongshan porphyritic quartz syenite and the Mopanshan biotite granite are 140.2±0.7 Ma and 139.9±0.7 Ma, respectively, and the cassiterite U-Pb weighted average age of the Mopanshan area is 134.9±1.4 Ma. All of them are Early Cretaceous in age. The whole rock geochemical analysis results show that these rocks are rich in silicon (SiO2=64.96%-76.71%), alkali (Na2O+ K2O=8.28%-9.03%), and aluminum (Al2O3=12.42%-15.88%). For trace elements, they are relatively enriched in elements such as Th, Pb, and Hf, and deficient in elements such as Nb, Ta, Ti, Sr, and P. For rare earth elements, they show significant enriched HREEs than LREEs, and Eu negative anomaly is unusually obvious. As the content of SiO2 increases, the content of TiO2, FeOT, Al2O3, CaO, Na2O, and P2O5 gradually decreases, showing a good negative correlation, suggesting a homogeneous magmatic source. However, the DI value of the Kulongshan sample is 89 and the Sn content is 2×10-6; the Mopanshan samples have a higher DI value (96-98) and higher Sn content (15×10-6~36×10-6). Based on the physical- chemical conditions inverted from mineralogy, the Kulongshan granite has experienced a process of oxygen fugacity increase during cooling, while the oxygen fugacity of the Mopanshan granite has further decreased during the cooling process. In addition, in terms of fluid halogen content, the Ⅳ (F) and Ⅳ (Cl) of biotite indicate the Mopanshan granite (Ⅳ(F)=0.95-1.15; Ⅳ(Cl)=-3.66--3.54) compared to the Kulongshan porphyritic quartz syenite (Ⅳ(F)=1.24-1.28; Ⅳ(Cl)=-2.96--2.52) has a higher concentration of Cl and F. In summary, low oxygen fugacity, high degree of evolution, and high F and Cl abundance, are the main factors affecting enrichment of cassiterite in granite in the Beidashan area.

       

    • loading
    • Abdel-Rahman, A. F. M., 1994. Nature of Biotites from Alkaline, Calc-Alkaline, and Peraluminous Magmas. Journal of Petrology, 35(2): 525-541. https://doi.org/10.1093/petrology/35.2.525
      Bell, E. A., Boehnke, P., Barboni, M., et al., 2019. Tracking Chemical Alteration in Magmatic Zircon Using Rare Earth Element Abundances. Chemical Geology, 510(1): 56-71. https://doi.org/10.1016/j.chemgeo.2019.02.027
      Belousova, E., Griffin, W., O'Reilly, S. Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602-622. https://doi.org/10.1007/s00410-002-0364-7
      Cao, H. W., 2015. Study on the Relationship between Mesozoic-Cenozoic Magmatic Rock Evolution and Mineralization in the Teng-Liang Tin Ore Belt in Western Yunnan (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Chelle-Michou, C., Chiaradia, M., 2017. Amphibole and Apatite Insights into the Evolution and Mass Balance of Cl and S in Magmas Associated with Porphyry Copper Deposits. Contributions to Mineralogy and Petrology, 172(11-12): 1-26. https://doi.org/10.1007/s00410-017-1417-2
      Chen, Y. W., Bi, X. W., Hu, R. Z., et al., 2010. The Geochemical Characteristics of Biotites and Their Constraints on Uranium Mineralization in Guidong Pluton. Bulletin of Mineralogy, Petrology and Geochemistry, 29(4): 355-363 (in Chinese with English abstract). doi: 10.3969/j.issn.1007-2802.2010.04.005
      Ferry, J. M., Watson, E. B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154(4): 429-437. https://doi.org/10.1007/s00410-007-0201-0
      Foster, M. D., 1960. Interpretation of the Composition of Trioctahedral Micas. United States Government Printing Office, Washington D. C. .
      Guan, Y. C., Yang, Z. F., Zhu, X. Y., et al., 2017. Petrogenesis and Geological Significance of the Beidashan Complex Rockmass, Inner Mongolia. Mineral Exploration, 8(6): 1054-1068 (in Chinese with English abstract). doi: 10.3969/j.issn.1674-7801.2017.06.014
      Henry, D. J., Guidotti, C. V., Thomson, J. A., 2005. The Ti-Saturation Surface for Low-to-Medium Pressure Metapelitic Biotites: Implications for Geothermometry and Ti-Substitution Mechanisms. American Mineralogist, 90(2-3): 316-328. https://doi.org/10.2138/am.2005.1498
      Jiang, S. Y., Zhao, K. D., Jiang, Y. H., et al., 2006. New Type of Tin Mineralization Related to Granite in South China: Evidence from Mineral Chemistry, Element and Isotope Geochemistry. Acta Petrologica Sinica, 22(10): 2509-2516 (in Chinese with English abstract).
      Li, C. Y., Zhang, R. Q., Ding, X., et al., 2016. Dating Cassiterite Using Laser Ablation ICP-MS. Ore Geology Reviews, 72: 313-322. https://doi.org/10.1016/j.oregeorev.2015.07.016
      Li, W. K., Cheng, Y. Q., Yang, Z. M., 2019. Geo-fO2: Integrated Software for Analysis of Magmatic Oxygen Fugacity. Geochemistry, Geophysics, Geosystems, 20(5): 2542-2555. https://doi.org/10.1029/2019GC008273
      Li, Y., Xu, L. Q., Li, T. D., et al., 2020. Geochronology, Zircon Trace Element and Lu-Hf Isotope Characteristics of the Biotite Granite and Their Geological Significance from Daolundaba Cu Polymetallic Deposit, Southern Great Hinggan Ling, China. Earth Science, 45(7): 2585-2597 (in Chinese with English abstract).
      Ling, H. F., 2011. Origin of Hydrothermal Fluids of Granite-Type Uranium Deposits: Constraints from Redox Conditions. Geological Review, 57(2): 193-206 (in Chinese with English abstract).
      Linnen, R. L., Williams-Jones, A. E., 1995. Genesis of a Magmatic Metamorphic Hydrothermal System: The Sn-W Polymetallic Deposits at Pilok, Thailand. Economic Geology, 90(5): 1148-1166. https://doi.org/10.2113/gsecongeo.90.5.1148
      Liu, Y. J., Li, W. M., Feng, Z. Q., et al., 2017. A Review of the Paleozoic Tectonics in the Eastern Part of Central Asian Orogenic Belt. Gondwana Research, 43: 123-148. https://doi.org/10.1016/j.gr.2016.03.013
      Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082
      Ludwig, K. R., 2012. Isoplot: A Geochronological Toolkit for Microsoft Excel: Special Publication 5. Berkeley Geochronology Center, Berkeley.
      Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)1010635: tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)1010635:tdog>2.3.co;2
      Mei, W., Lü, X. B., Wang, X. D., et al., 2020. Alteration, Mineralization and Genesis of Huanggang Skarn Iron-Tin Polymetallic Deposit, Southern Great Xing'an Range. Earth Science, 45(12): 4428-4445 (in Chinese with English abstract).
      Munoz, J. L., 1984. F-OH and Cl-OH Exchange in Micas with Applications to Hydrothermal Ore Deposits. Reviews in Mineralogy, 13(1): 469-493.
      Nachit, H., Ibhi, A., Abia, E. H., et al., 2005. Discrimination between Primary Magmatic Biotites, Reequilibrated Biotites and Neoformed Biotites. Comptes Rendus Geoscience, 337(16): 1415-1420. https://doi.org/10.1016/j.crte.2005.09.002
      Paton, C., Woodhead, J. D., Hellstrom, J. C., et al., 2010. Improved Laser Ablation U-Pb Zircon Geochronology through Robust Downhole Fractionation Correction. Geochemistry, Geophysics, Geosystems, 11(3): Q0AA06. https://doi.org/10.1029/2009GC002618
      Pettke, T., Audétat, A., Schaltegger, U., et al., 2005. Magmatic-to-Hydrothermal Crystallization in the W-Sn Mineralized Mole Granite (NSW, Australia): Part Ⅱ: Evolving Zircon and Thorite Trace Element Chemistry. Chemical Geology, 220(3-4): 191-213. https://doi.org/10.1016/j.chemgeo.2005.02.017
      Rickwood, P. C., 1989. Boundary Lines within Petrologic Diagrams which Use Oxides of Major and Minor Elements. Lithos, 22(4): 247-263. https://doi.org/10.1016/0024-4937(89)90028-5
      Shao, J. D., Wang, S. G., Zhao, W. T., et al., 2007. Geological Characteristics and Prospecting Potential in Daxinganling Region. Geology and Resources, 16(4): 252-256, 262 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-1947.2007.04.002
      Štemprok, M., 1990. Solubility of Tin, Tungsten and Molybdenum Oxides in Felsic Magmas. Mineralium Deposita, 25(3): 205-212. https://doi.org/10.1007/BF00190382
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Tang, P., Tang, J. X., Zheng, W. B., et al., 2017. Progress in Study of Mineral Chemistry of Magmatic and Hydrothermal Biotites. Mineral Deposits, 36(4): 935-950 (in Chinese with English abstract).
      Trail, D., Watson, E. B., Tailby, N. D., 2012. Ce and Eu Anomalies in Zircon as Proxies for the Oxidation State of Magmas. Geochimica et Cosmochimica Acta, 97: 70-87. https://doi.org/10.1016/j.gca.2012.08.032
      Wang, J. B., Wang, Y. W., Wang, L. J., 2005. Tin-Polymetallic Metallogenic Series in the Southern Part of Da Hinggan Mountains, China. Geology and Prospecting, 41(6): 15-20 (in Chinese with English abstract).
      Wones, D. R., 1965. Stability of Biotite: Experiment, Theory, and Application. American Mineralogist, 50(9): 1228-1272.
      Yang, F., Sun, J. G., Wang, Y., et al., 2019. Geology, Geochronology and Geochemistry of Weilasituo Sn-Polymetallic Deposit in Inner Mongolia, China. Minerals, 9(2): 104-132. https://doi.org/10.3390/min9020104
      Yavuz, F., 2007. WinAmphcal: A Windows Program for the IMA-04 Amphibole Classification. Geochemistry, Geophysics, Geosystems, 8(1): Q01004. https://doi.org/10.1029/2006GC001391
      Yuan, S. D., Peng, J. T., Hao, S., et al., 2011. In Situ LA-MC-ICP-MS and ID-TIMS U-Pb Geochronology of Cassiterite in the Giant Furong Tin Deposit, Hunan Province, South China: New Constraints on the Timing of Tin-Polymetallic Mineralization. Ore Geology Reviews, 43(1): 235-242. https://doi.org/10.1016/j.oregeorev.2011.08.002
      Zeng, Q. D., Liu, J. M., Li, B. Y., et al., 2015. Types, Characteristics and Prospecting Potential of Tin Polymetallic Mineralization in the Central-Southern Part of Daxing'anling. Acta Mineralogica Sinica, 35(S1): 96-97(in Chinese with English abstract).
      Zhai, D. G., Liu, J. J., Li, J. M., et al., 2016. Geochronological Study of Weilasituo Porphyry Type Sn Deposit in Inner Mongolia and Its Geological Significance. Mineral Deposits, 35(5): 1011-1022 (in Chinese with English abstract).
      Zhu, X. Y., Zhang, Z. H., Fu, X., et al., 2016. Geological and Geochemical Characteristics of the Weilasito Sn-Zn Deposit, Inner Mongolia. Geology in China, 43(1): 188-208 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2016.01.014
      曹华文, 2015. 滇西腾‒梁锡矿带中‒新生代岩浆岩演化与成矿关系研究(博士学位论文). 北京: 中国地质大学.
      陈佑纬, 毕献武, 胡瑞忠, 等, 2010. 贵东岩体黑云母成分特征及其对铀成矿的制约. 矿物岩石地球化学通报, 29(4): 355-363. doi: 10.3969/j.issn.1007-2802.2010.04.005
      管育春, 杨宗锋, 祝新友, 等, 2017. 内蒙古北大山杂岩体成因及其地质意义. 矿产勘查, 8(6): 1054-1068. doi: 10.3969/j.issn.1674-7801.2017.06.014
      蒋少涌, 赵葵东, 姜耀辉, 等, 2006. 华南与花岗岩有关的一种新类型的锡成矿作用: 矿物化学、元素和同位素地球化学证据. 岩石学报, 22(10): 2509-2516. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200610010.htm
      李岩, 许立权, 李廷栋, 等, 2020. 大兴安岭南段道伦达坝黑云母花岗岩成岩时代、锆石微量元素、Lu-Hf同位素特征及地质意义. 地球科学, 45(7): 2585-2597. doi: 10.3799/dqkx.2020.099
      凌洪飞, 2011. 论花岗岩型铀矿床热液来源: 来自氧逸度条件的制约. 地质论评, 57(2): 193-206. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201102005.htm
      梅微, 吕新彪, 王祥东, 等, 2020. 大兴安岭南段黄岗矽卡岩型铁锡多金属矿床蚀变矿化特征及其成因. 地球科学, 45(12): 4428-4445. doi: 10.3799/dqkx.2020.298
      邵积东, 王守光, 赵文涛, 等, 2007. 大兴安岭地区成矿地质特征及找矿前景分析. 地质与资源, 16(4): 252-256, 262. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD200704003.htm
      唐攀, 唐菊兴, 郑文宝, 等, 2017. 岩浆黑云母和热液黑云母矿物化学研究进展. 矿床地质, 36(4): 935-950. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201704010.htm
      王京彬, 王玉往, 王莉娟, 2005. 大兴安岭南段锡多金属成矿系列. 地质与勘探, 41(6): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200506002.htm
      曾庆栋, 刘建明, 李泊洋, 等, 2015. 大兴安岭中南段锡多金属矿化类型、特征及找矿潜力. 矿物学报, 35(S1): 96-97. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2015S1072.htm
      翟德高, 刘家军, 李俊明, 等, 2016. 内蒙古维拉斯托斑岩型锡矿床成岩、成矿时代及其地质意义. 矿床地质, 35(5): 1011-1022. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201605009.htm
      祝新友, 张志辉, 付旭, 等, 2016. 内蒙古赤峰维拉斯托大型锡多金属矿的地质地球化学特征. 中国地质, 43(1): 188-208. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201601014.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(14)  / Tables(5)

      Article views (892) PDF downloads(71) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return