• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 5
    May  2024
    Turn off MathJax
    Article Contents
    Wang Bingjie, Wang Deying, Guo Tao, Wang Xin, Hui Guanzhou, Xue Mingwang, 2024. Development Characteristics and Origin of Overpressure in South of Liaozhong Depression, Bohai Bay Basin. Earth Science, 49(5): 1832-1843. doi: 10.3799/dqkx.2021.254
    Citation: Wang Bingjie, Wang Deying, Guo Tao, Wang Xin, Hui Guanzhou, Xue Mingwang, 2024. Development Characteristics and Origin of Overpressure in South of Liaozhong Depression, Bohai Bay Basin. Earth Science, 49(5): 1832-1843. doi: 10.3799/dqkx.2021.254

    Development Characteristics and Origin of Overpressure in South of Liaozhong Depression, Bohai Bay Basin

    doi: 10.3799/dqkx.2021.254
    • Received Date: 2021-12-13
      Available Online: 2024-06-04
    • Publish Date: 2024-05-25
    • This paper deals with the origin of overpressure in the Paleogene strata, in south of Liaozhong depression, Bohai Bay Basin, through comprehensive application and analysis of various geological data and research methods, we suggest that hydrocarbon generation is the main mechanism. In some areas (W-D structure), there is overpressure formed by superposition of disequilibrium and hydrocarbon generation. The main evidences are as follows: (1) Except for W-D structure, logging curves generally do not have typical characteristics of high porosity and low density caused by disequilibrium; (2) The top depth of overpressure formed by disequilibrium in sedimentary background is inconsistent with the reality; (3) The overpressure top develops in the internal large mudstone section, with greatly varying depth range (from 2 200-3 100 m), and it is basically the same as hydrocarbon generation top of source rocks; (4) The relationship between formation effective stress with velocity and density shows that the overpressure points all fall on the "unloading" curve, and the overpressure characteristics are hydrocarbon generation; (5) The overpressure source rocks are still in large hydrocarbon generation stage, continue to provide guarantee for overpressure formation; (6) Overpressure formed by superimposition of disequilibrium and hydrocarbon generation is characterized by typical formation high porosity and low density, the relationship curves between effective stress and formation velocity and density formations show obvious unloading phenomena.

       

    • loading
    • Bowers, G. L., 1995. Pore-Pressure Estimation from Velocity Data: Accounting for Overpressure Mechanisms Besides Undercompaction. SPE Drilling and Completion, 10(2): 89-95. https://doi.org/10.2118/27488-PA
      Dan, M., 1978. Some Remarks on the Development of Sedimentary Basins. Earth and Planetary Science Letters, 40(1): 25-32. https://doi.org/10.1016/0012-821x(78)90071-7
      Eaton, B. A., 1972. Graphical Method Predicts Geopressure Worldwide. Word Oil, 51-56. https://doi.org/10.1016/0038-092X(76)90080-3
      Gong, Y. J., Zhang, K. H., Zeng, Z. P., et al., 2021. Origin of Overpressure, Vertical Transfer and Hydrocarbon Accumulation of Jurassic in Fukang Sag, Junggar Basin. Earth Science, 46(10): 3588-3600 (in Chinese with English abstract).
      Guo, X. W., He, S., Liu, K. Y., et al., 2010. Oil Generation as the Dominant Overpressure Mechanism in the Cenozoic Dongying Depression, Bohai Bay Basin, China. AAPG Bulletin, 94(12): 1859-1881. https://doi.org/10.1306/05191009179
      Guo, X. W., He, S., Zheng, L. J., et al., 2011. A Quantitative Model for the Overpressure Caused by Oil Generation and Its Influential Factors. Acta Petrolei Sinica, 32(4): 637-644 (in Chinese with English abstract).
      Guo, X. W., Liu, K. Y., He, S., et al., 2016. Quantitative Estimation of Overpressure Caused by Gas Generation and Application to the Baiyun Depression in the Pearl River Mouth Basin, South China Sea. Geofluids, 16(1): 129-148. https://doi.org/10.1111/gfl.12140
      He, S., Song, G. Q., Wang, Y. S., et al., 2012. Distribution and Major Control Factors of the Present-Day Large-Scale Overpressured System in Dongying Depression. Earth Science, 37(5): 1029-1042 (in Chinese with English abstract).
      Huang, X. B., Xu, C. G., Zhou, X. H., et al., 2013. Hydrocarbon Distribution Characteristics and Accumulation Period of Second Member of Dongying Formation in the South of Liaozhong Sag. Petroleum Geology and Engineering, 27(4): 16-19, 145 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-8217.2013.04.005
      Issler, D. R., 1992. A New Approach to Shale Compaction and Stratigraphic Restoration, Deaufort-Mackenzie Basin and Mackenzie Corridor, Northern Canada. AAPG Bulletin, 78: 1170-1189. https://doi.org/10.1306/BDFF8998-1718-11D7-8645000102C1865D
      Muggeridge, A., Abacioglu, Y., England, W., et al., 2005. The Rate of Pressure Dissipation from Abnormally Pressured Compartments. AAPG Bulletin, 89(1): 61-80. https://doi.org/10.1306/07300403002
      Peng, J. S., Xu, C. G., Wei, A. J., et al., 2016. Hydrocarbon Migration Caused by Rupture of Pressure Compartment in South Liaozhong Sag, Bohai Bay Basin, Offshore China. Petroleum Exploration and Development, 43(3): 386-395 (in Chinese with English abstract). doi: 10.1016/S1876-3804(16)30045-3
      Sweeney, J., Burnham, A. K., 1990. Evaluation of a Simple Model of Vitrinite Reflectance Based on Chemical Kinetics. AAPG Bulletin, 74(10): 1559-1570.
      Teige, G. M. G., Hermanrud, C., Wensaas, L., et al., 1999. The Lack of Relationship between Overpressure and Porosity in North Sea and Haltenbanken Shales. Marine and Petroleum Geology, 16(4): 321-335. https://doi.org/10.1016/S0264-8172(98)00035-X
      Tingay, M. R. P., Hillis, R. R., Swarbrick, R. E., et al., 2009. Origin of Overpressure and Pore-Pressure Prediction in the Baram Province, Brunei. AAPG Bulletin, 93(1): 51-74. https://doi.org/10.1306/08080808016
      Wang, B. J., He, S., Song, G. Q., et al., 2012. Effective Stress Characteristics of Different Overpressured Origins in Dongying Depression of the Bohai Bay Basin, China. Geological Science and Technology Information, 31(2): 72-79 (in Chinese with English abstract).
      Waples, D. W., Kamata, H., Suizu, M., 1992. The Art of Maturity Modeling. Part 1: Alternative Models and Sensitivity Analysis. AAPG Bulletin, 76(1): 47-66.
      Wei, A. J., 2015. Characteristics, Origin and Quantitative Evaluation of Overpressure in Strike-Slip and Compression-Shear Booster Zone of Tan-Lu Fault: A Case Study in JZ27 Section of Liaodong Bay, Bohai Sea. Petroleum Geology & Experiment, 37(1): 47-52 (in Chinese with English abstract). doi: 10.3969/j.issn.1009-9603.2015.01.009
      van Ruth, P., Hillis, R., Tingate, P., 2004. The Origin of Overpressure in the Carnarvon Basin, Western Australia: Implications for Pore Pressure Prediction. Petroleum Geoscience, 10(3): 247-257. https://doi.org/10.1144/1354-079302-562
      Xie, X. N., Li, S. T., Liu, X. F., 2006. Basin Fluid Dynamics in Abnormally Pressured Environments. China University of Geosciences Press, Wuhan (in Chinese).
      Yang, J., He, S., Wang, B. J., 2009. Characteristics and Prediction Model of the Overpressures in the Niuzhuang Sag of Dongying Depression. Geological Science and Technology Information, 28(4): 34-40 (in Chinese with English abstract).
      Zhang, X., Chen, H. H., Kong, L. T., et al., 2020. The Coupling Relationship between Paleofluid Pressure Evolution and Hydrocarbon-Charging Events in the Deep of Biyang Depression, Central China. Earth Science, 45(5): 1769-1781 (in Chinese with English abstract).
      Zhao, J. Z., Li, J., Xu, Z. Y., 2017. Advances in the Origin of Overpressures in Sedimentary Basins. Acta Petrolei Sinica, 38(9): 973-998 (in Chinese with English abstract).
      Zhou, X. H., Liu, Z., Li, W. L., 2009. Hydrocarbon Accumulation Mechanism in Liaodong Bay Fault Depression. Petroleum Industry Press, Beijing (in Chinese).
      宫亚军, 张奎华, 曾治平, 等, 2021. 准噶尔盆地阜康凹陷侏罗系超压成因、垂向传导及油气成藏. 地球科学, 46(10): 3588-3600. doi: 10.3799/dqkx.2020.366
      郭小文, 何生, 郑伦举, 等, 2011. 生油增压定量模型及影响因素. 石油学报, 32(4): 637-644. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201104013.htm
      何生, 宋国奇, 王永诗, 等, 2012. 东营凹陷现今大规模超压系统整体分布特征及主控因素. 地球科学, 37(5): 1029-1042. doi: 10.3799/dqkx.2012.110
      黄晓波, 徐长贵, 周心怀, 等, 2013. 辽中南洼东二段油气分布特征与成藏期次. 石油地质与工程, 27(4): 16-19, 145. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN201304006.htm
      彭靖淞, 徐长贵, 韦阿娟, 等, 2016. 渤海湾盆地辽中南洼压力封存箱的破裂与油气运移. 石油勘探与开发, 43(3): 386-395. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201603009.htm
      王冰洁, 何生, 宋国奇, 等, 2012. 东营凹陷不同超压成因的有效应力特征. 地质科技情报, 31(2): 72-79. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201202011.htm
      韦阿娟, 2015. 郯庐断裂增压带超压特征、成因及其定量评价——以渤海海域辽东湾锦州27段为例. 石油实验地质, 37(1): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201501009.htm
      解习农, 李思田, 刘晓峰, 2006. 异常压力盆地流体动力学. 武汉: 中国地质大学出版社.
      杨姣, 何生, 王冰洁, 2009. 东营凹陷牛庄洼陷超压特征及预测模型. 地质科技情报, 28(4): 34-40. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200904007.htm
      张鑫, 陈红汉, 孔令涛, 等, 2020. 泌阳凹陷深凹区古流体压力演化与油气充注耦合关系. 地球科学, 45(5): 1769-1781. doi: 10.3799/dqkx.2019.187
      赵靖舟, 李军, 徐泽阳, 2017. 沉积盆地超压成因研究进展. 石油学报, 38(9): 973-998. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201709001.htm
      周心怀, 刘震, 李潍莲, 2009. 辽东湾断陷油气成藏机理. 北京: 石油工业出版社.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)

      Article views (398) PDF downloads(60) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return