• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 7
    Jul.  2022
    Turn off MathJax
    Article Contents
    Zheng Jinyun, Gao Yangdong, Zhang Xiangtao, Pang Xiong, Zhang Qinglin, Lao Miaoji, Feng Xuan, 2022. Tectonic Evolution Cycles and Cenozoic Sedimentary Environment Changes in Pearl River Mouth Basin. Earth Science, 47(7): 2374-2390. doi: 10.3799/dqkx.2021.258
    Citation: Zheng Jinyun, Gao Yangdong, Zhang Xiangtao, Pang Xiong, Zhang Qinglin, Lao Miaoji, Feng Xuan, 2022. Tectonic Evolution Cycles and Cenozoic Sedimentary Environment Changes in Pearl River Mouth Basin. Earth Science, 47(7): 2374-2390. doi: 10.3799/dqkx.2021.258

    Tectonic Evolution Cycles and Cenozoic Sedimentary Environment Changes in Pearl River Mouth Basin

    doi: 10.3799/dqkx.2021.258
    • Received Date: 2021-09-30
    • Publish Date: 2022-07-25
    • There is still a lack of systematic understanding of the evolution process of the Pearl River Mouth Basin since the Mesozoic and its response to the evolution of sedimentary environment. Based on the comparative analysis of the magmatic activity, architectural style of depression and its modification, typical structural deformation style and migration of sedimentary centers, the tectonic evolution of the Pearl River Mouth Basin in Meso-Cenozoic can be divided into 4 stages and 7 periods: (1) the evolution stage of the continental-margin magmatic arc and forearc basin, dominated by paleo-Pacific plate subduction, from Middle Jurassic to early Late Cretaceous (~170-90 Ma); (2) the evolution stage of peripheral foreland basin/post-orogenic collapse to active rift basin in back-arc area, dominated by the subduction retreat of Pacific plate, from Late Cretaceous to Middle Eocene (~90-43 Ma); (3) the evolution stage of passive continental margin, dominated by South China block's extrusion and proto-South China Sea subduction, from Middle Eocene to Middle Miocene (~43-10 Ma); (4) the evolution stage of compression and tensional-shear faults, dominated by NWW upward thrust of the Philippine Sea Plate, since the Late Miocene (~10-0 Ma).~90 Ma, ~43 Ma and~10 Ma are three important periods of tectonic transformation. The subduction of the West Pacific transformed from Andean-type subduction to West Pacific-type subduction in~90 Ma, and the rifting transformed from active rift to passive continental margin extension in ~43 Ma, and the tectonic environment transformed from passive continental margin extension to compression and wrench in ~10 Ma. In this process, with the development and extinction of the proto-South China Sea and the South China Sea, the sedimentary environment in the Cenozoic rifting period gradually transgressed from east to west and from south to north. In the post-rifting period, under the control of phased differential subsidence from south to north, depositional environment transformed from shallow water to deep water, which resulted in significant zoning differences of the petroleum geological conditions in Zhu Ⅰ/Ⅲ, Zhu Ⅱ and Zhu Ⅳ depressions.

       

    • loading
    • Chen, H., Xie, X. N., Mao, K. N., et al., 2020. Depositional Characteristics and Formation Mechanisms of Deep-Water Canyon Systems along the Northern South China Sea Margin. Journal of Earth Science, 31(4): 808-819. https://doi.org/10.1007/s12583-020-1284-z
      Cui, Y. C., Shao, L., Li, Z. X., et al., 2021. A Mesozoic Andean-Type Active Continental Margin along Coastal South China: New Geological Records from the Basement of the Northern South China Sea. Gondwana Research, 99: 36-52. https://doi.org/10.1016/j.gr.2021.06.021
      Ding, W. W., Sun, Z., Dadd, K., et al., 2018. Structures within the Oceanic Crust of the Central South China Sea Basin and Their Implications for Oceanic Accretionary Processes. Earth and Planetary Science Letters, 488: 115-125. https://doi.org/10.1016/j.epsl.2018.02.011
      Ding, W.W., 2021. Continental Margin Dynamics of South China Sea: From Continental Break-Up to Seafloor Spreading. Earth Science, 46(3): 790-800 (in Chinese with English abstract).
      Dong, S.W., Zhang, Y.Q., Li, H.L., et al., 2019. The Yanshan Orogeny and Late Mesozoic Multi-Plate Convergence in East Asia—Commemorating 90th Years of the "Yanshan Orogeny". Scientia Sinica Terrae, 49(6): 913-938 (in Chinese). doi: 10.1360/N072017-00432
      Gao, Y.D., Lin, H.M., Liu, P., et al., 2021. Characteristics and Periods of Cenozoic Magmatic Activity in the Eastern Yangjiang Sag, Pearl River Mouth Basin, China. Journal of Chengdu University of Technology (Science & Technology Edition), 48(2): 154-164 (in Chinese with English abstract).
      Hall, R., Breitfeld, H. T., 2017. Nature and Demise of the Proto-South China Sea. Bulletin of the Geological Society of Malaysia, 63: 61-76. https://doi.org/10.7186/bgsm63201703
      Hao, H.J., Shi, H.S., Zhang, X.T., et al., 2009. Mesozoic Sediments and Their Petroleum Geology Conditions in Chaoshan Sag: A Discussion Based on Drilling Results from the Exploratory Well LF35-1-1. China Offshore Oil and Gas, 21(3): 151-156 (in Chinese with English abstract).
      He, M., Zhu, W.L., Wu, Z., et al., 2019. Neotectonic Movement Characteristics and Hydrocarbon Accumulation of the Pearl River Mouth Basin. China Offshore Oil and Gas, 31(5): 9-20 (in Chinese with English abstract).
      Hou, M.C., Chen, H.D., Tian, J.C., et al., 2007. Sedimentary Facies and Palaeogeography of the Sanshui Basin, Guangdong during the Palaeogene. Sedimentary Geology and Tethyan Geology, 27(2): 37-44 (in Chinese with English abstract).
      Huang, Q.Y., Yan, Y., Zhao, Q.H., et al., 2012. Cenozoic Stratigraphy of Taiwan: Looking into Rifting, Stratigraphy and Paleoceanography of South China Sea. Chinese Science Bulletin, 57(20): 1842-1862 (in Chinese). doi: 10.1360/csb2012-57-20-1842
      Jian, Z. M., Jin, H. Y., Kaminski, M. A., et al., 2019. Discovery of the Marine Eocene in the Northern South China Sea. National Science Review, 6(5): 881-885. https://doi.org/10.1093/nsr/nwz084
      Li, C. F., Xu, X., Lin, J., et al., 2014. Ages and Magnetic Structures of the South China Sea Constrained by Deep Tow Magnetic Surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 15(12): 4958-4983. https://doi.org/10.1002/2014gc005567 doi: 10.1002/2014GC005567
      Li, J.B., Ding, W.W., Wu, Z.Y., et al., 2012. The Propagation of Seafloor Spreading in the Southwestern Subbasin, South China Sea. Chinese Science Bulletin, 57(20): 1896-1905 (in Chinese). doi: 10.1360/csb2012-57-20-1896
      Li, P.L., 1993. Cenozoic Tectonic Movement in the Pearl River Mouth Basin. China Offshore Oil and Gas (Geology), 7(6): 11-17 (in Chinese with English abstract).
      Li, Q.Y., Wu, G.X., Zhang, L.L., et al., 2017. Paleogene Marine Deposition Records of Rifting and Breakup of the South China Sea: An Overview. Scientia Sinica Terrae, 47(12): 1447-1459 (in Chinese).
      Li, X.H., Li, W.X., Li, Z.X., 2007. Another Discussion on the Genetic Types and Tectonic Significance of the Early Yanshan Granites in Nanling. Chinese Science Bulletin, 52(9): 981-991 (in Chinese). doi: 10.1360/csb2007-52-9-981
      Lin, J., Li, J.B., Xu, Y.G., et al., 2019. Ocean Drilling and Major Advances in Marine Geological and Geophysical Research of the South China Sea. Haiyang Xuebao, 41(10): 125-140 (in Chinese with English abstract).
      Liu, B.J., Pang, X., Yan, C.Z., et al., 2011. Evolution of the Oligocene-Miocene Shelf Slope-Break Zone in the Baiyun Deep-Water Area of the Pearl River Mouth Basin and Its Significance in Oil-Gas Exploration. Acta Petrolei Sinica, 32(2): 234-242 (in Chinese with English abstract).
      Lu, B.L., Wang, P.J., Liang, J.S., et al., 2014. Structural Properties of Paleo-South China Sea and Their Relationship with the Tethys and the Paleo-Pacific Tectonic Domain. Journal of Jilin University (Earth Science Edition), 44(5): 1441-1450 (in Chinese with English abstract).
      Mi, L.J., Zhang, X.T., Pang, X., et al., 2019. Formation Mechanism and Petroleum Geology of Pearl River Mouth Basin. Acta Petrolei Sinica, 40(S1): 1-10 (in Chinese with English abstract).
      Pang, X., Chen, C.M., Peng, D.J., et al., 2008. Basic Geology of Baiyun Deep-Water Area in the Northern South China Sea. China Offshore Oil and Gas, 20(4): 215-222 (in Chinese with English abstract).
      Pang, X., Zheng, J.Y., Mei, L.F., et al., 2021. Characteristics and Origin of Continental Marginal Fault Depressions under the Background of Preexisting Subduction Continental Margin, Northern South China Sea, China. Petroleum Exploration and Development, 48(5): 1069-1080 (in Chinese with English abstract).
      Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956
      Ren, J.Y., Pang, X., Lei, C., et al., 2015. Ocean and Continent Transition in Passive Continental Margins and Analysis of Lithospheric Extension and Breakup Process: Implication for Research of the Deepwater Basins in the Continental Margins of South China Sea. Earth Science Frontiers, 22(1): 102-114 (in Chinese with English abstract).
      Ren, J.Y., Pang, X., Yu, P., et al., 2018. Characteristics and Formation Mechanism of Deepwater and Ultra-Deepwater Basins in the Northern Continental Margin of the South China Sea. Chinese Journal of Geophysics, 61(12): 4901-4920 (in Chinese with English abstract).
      Shellnutt, J. G., Lan, C. Y., Van Long, T., et al., 2013. Formation of Cretaceous Cordilleran and Post-Orogenic Granites and Their Microgranular Enclaves from the Dalat Zone, Southern Vietnam: Tectonic Implications for the Evolution of Southeast Asia. Lithos, 182-183: 229-241. https://doi.org/10.1016/j.lithos.2013.09.016
      Shi, H.S., Du, J.Y., Mei, L.F., et al., 2020. Huizhou Movement and Its Significance in Pearl River Mouth Basin, China. Petroleum Exploration and Development, 47(3): 447-461 (in Chinese with English abstract).
      Shu, L.S., Yu, J.H., Wang, D.Z., 2000. Late Mesozoic Granitic Magmatism and Its Relation to Metamorphism Ductile Deformation in the Changle-Nan'ao Fault Zone, Fujian Province. Geological Journal of China Universities, 6(3): 368-378 (in Chinese with English abstract).
      Sun, Z., Li, F.C., Lin, J., et al., 2021. The Rifting-Breakup Process of the Passive Continental Margin and Its Relationship with Magmatism: The Attribution of the South China Sea. Earth Science, 46(3): 770-789 (in Chinese with English abstract).
      Sun, Z., Lin, J., Qiu, N., et al., 2019. The Role of Magmatism in the Thinning and Breakup of the South China Sea Continental Margin Special Topic: The South China Sea Ocean Drilling. National Science Review, 6(5): 871-876. https://doi.org/10.1093/nsr/nwz116
      Sun, Z., Lin, J., Wang, P.X., et al., 2020. International Collaboration of Ocean Exploration in the South China Sea Enhanced by International Ocean Discovery Program Expeditions 367/368/368x. Journal of Tropical Oceanography, 39(6): 18-29 (in Chinese with English abstract).
      Wang, C.S., Dai, J.G., Liu, Z.F., et al., 2009. The Uplift History of the Tibetan Plateau and Himalaya and Its Study Approaches and Techniques: A Review. Earth Science Frontiers, 16(3): 1-30 (in Chinese with English abstract).
      Yuan, X.B., 2019. The Record of Cenozoic Magmatism in Sanshui Basin and Its Relationship with the Early Tectonic Evolution Stage of the South China Sea (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Zhang, L.L., Shu, Y., Cai, G.F., et al., 2019. Eocene-Oligocene Sedimentary Environment Evolution and Its Impact on Hydrocarbon Source Conditions in Eastern Pearl River Mouth Basin. Acta Petrolei Sinica, 40(S1): 153-165 (in Chinese with English abstract).
      Zhang, S.F., Zhang, X.T., Zhang, Q.L., et al., 2015. Characteristics of the Cretaceous in the Northern South China Sea and Tectonic Implications. Marine Geology & Quaternary Geology, 35(6): 81-86 (in Chinese with English abstract).
      Zhang, W., Fang, N.Q., 2014. Geochemistry Characteristics of Eocene Volcanic Rocks in Sanshui Basin, Guangdong. Earth Science, 39(1): 37-44 (in Chinese with English abstract).
      Zhang, Z.M., Ding, H.X., Dong, X., et al., 2018. The Gangdese Arc Magmatism: From Neo-Tethyan Subduction to Indo-Asian Collision. Earth Science Frontiers, 25(6): 78-91 (in Chinese with English abstract).
      Zhou, D., Sun, Z., 2017. Plate Evolution in the Pacific Domain since Late Mesozoic and Its Inspiration to Tectonic Research of East Asia Margin. Journal of Tropical Oceanography, 36(3): 1-19 (in Chinese with English abstract).
      Zhou, D., Sun, Z., Chen, H.Z., et al., 2005. Mesozoic Lithofacies, Paleo-Geography, and Tectonic Evolution of the South China Sea and Surrounding Areas. Earth Science Frontiers, 12(3): 204-218 (in Chinese with English abstract).
      Zou, H.P., Li, P.L., Rao, C.T., 1995. Geochemistry of Cenozoic Volcanic Rocks in Zhu Jiangkou Basin and Its Geodynamic Significance. Geochimica, 24(S1): 33-45 (in Chinese with English abstract).
      丁巍伟, 2021. 南海大陆边缘动力学: 从陆缘破裂到海底扩张. 地球科学, 46(3): 790-800. doi: 10.3799/dqkx.2020.303
      董树文, 张岳桥, 李海龙, 等, 2019. "燕山运动"与东亚大陆晚中生代多板块汇聚构造——纪念"燕山运动"90周年. 中国科学: 地球科学, 49(6): 913-938. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201906002.htm
      高阳东, 林鹤鸣, 刘培, 等, 2021. 珠江口盆地阳江东凹新生代岩浆活动特征与期次. 成都理工大学学报(自然科学版), 48(2): 154-164. doi: 10.3969/j.issn.1671-9727.2021.02.03
      郝沪军, 施和生, 张向涛, 等, 2009. 潮汕坳陷中生界及其石油地质条件: 基于LF35-1-1探索井钻探结果的讨论. 中国海上油气, 21(3): 151-156. doi: 10.3969/j.issn.1673-1506.2009.03.002
      何敏, 朱伟林, 吴哲, 等, 2019. 珠江口盆地新构造运动特征与油气成藏. 中国海上油气, 31(5): 9-20. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201905002.htm
      侯明才, 陈洪德, 田景春, 等, 2007. 广东三水盆地古近纪岩相古地理特征及演化. 沉积与特提斯地质, 27(2): 37-44. doi: 10.3969/j.issn.1009-3850.2007.02.006
      黄奇瑜, 闫义, 赵泉鸿, 等, 2012. 台湾新生代层序: 反映南海张裂, 层序和古海洋变化机制. 科学通报, 57(20): 1842-1862. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201220005.htm
      李家彪, 丁巍伟, 吴自银, 等, 2012. 南海西南海盆的渐进式扩张. 科学通报, 57(20): 1896-1905. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201220008.htm
      李平鲁, 1993. 珠江口盆地新生代构造运动. 中国海上油气(地质), 7(6): 11-17. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199306003.htm
      李前裕, 吴国瑄, 张丽丽, 等, 2017. 古近纪南海断陷作用和破裂不整合的海相沉积记录. 中国科学: 地球科学, 47(12): 1447-1459. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201712007.htm
      李献华, 李武显, 李正祥, 2007. 再论南岭燕山早期花岗岩的成因类型与构造意义. 科学通报, 52(9): 981-991. doi: 10.3321/j.issn:0023-074X.2007.09.001
      林间, 李家彪, 徐义刚, 等, 2019. 南海大洋钻探及海洋地质与地球物理前沿研究新突破. 海洋学报, 41(10): 125-140. doi: 10.3969/j.issn.0253-4193.2019.10.009
      柳保军, 庞雄, 颜承志, 等, 2011. 珠江口盆地白云深水区渐新世-中新世陆架坡折带演化及油气勘探意义. 石油学报, 32(2): 234-242. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201102008.htm
      鲁宝亮, 王璞珺, 梁建设, 等, 2014. 古南海构造属性及其与特提斯和古太平洋构造域的关系. 吉林大学学报(地球科学版), 44(5): 1441-1450. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201405005.htm
      米立军, 张向涛, 庞雄, 等, 2019. 珠江口盆地形成机制与油气地质. 石油学报, 40(S1): 1-10. doi: 10.7623/syxb2019S1001
      庞雄, 陈长民, 彭大钧, 等, 2008. 南海北部白云深水区之基础地质. 中国海上油气, 20(4): 215-222. doi: 10.3969/j.issn.1673-1506.2008.04.001
      庞雄, 郑金云, 梅廉夫, 等, 2021. 先存俯冲陆缘背景下南海北部陆缘断陷特征及成因. 石油勘探与开发, 48(5): 1069-1080. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202105021.htm
      任建业, 庞雄, 雷超, 等, 2015. 被动陆缘洋陆转换带和岩石圈伸展破裂过程分析及其对南海陆缘深水盆地研究的启示. 地学前缘, 22(1): 102-114.
      任建业, 庞雄, 于鹏, 等, 2018. 南海北部陆缘深水-超深水盆地成因机制分析. 地球物理学报, 61(12): 4901-4920. doi: 10.6038/cjg2018L0558
      施和生, 杜家元, 梅廉夫, 等, 2020. 珠江口盆地惠州运动及其意义. 石油勘探与开发, 47(3): 447-461. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202003003.htm
      舒良树, 于津海, 王德滋, 2000. 长乐-南澳断裂带晚中生代岩浆活动与变质-变形关系. 高校地质学报, 6(3): 368-378. doi: 10.3969/j.issn.1006-7493.2000.03.001
      孙珍, 李付成, 林间, 等, 2021. 被动大陆边缘张-破裂过程与岩浆活动: 南海的归属. 地球科学, 46(3): 770-789. doi: 10.3799/dqkx.2020.371
      孙珍, 林间, 汪品先, 等, 2020. 国际大洋发现计划IODP367/368/368X航次推动南海国际化海洋科考成果. 热带海洋学报, 39(6): 18-29. https://www.cnki.com.cn/Article/CJFDTOTAL-RDHY202006002.htm
      王成善, 戴紧根, 刘志飞, 等, 2009. 西藏高原与喜马拉雅的隆升历史和研究方法: 回顾与进展. 地学前缘, 16(3): 1-30. doi: 10.3321/j.issn:1005-2321.2009.03.001
      袁晓博, 2019. 三水盆地新生代岩浆记录与南海早期演化(博士学位论文). 北京: 中国地质大学.
      张丽丽, 舒誉, 蔡国富, 等, 2019. 珠江口盆地东部始新世-渐新世沉积环境演变及对烃源条件的影响. 石油学报, 40(S1): 153-165. doi: 10.7623/syxb2019S1013
      张素芳, 张向涛, 张青林, 等, 2015. 南海北部白垩系发育特征及构造意义. 海洋地质与第四纪地质, 35(6): 81-86. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201506014.htm
      张维, 方念乔, 2014. 广东三水盆地始新世火山岩地球化学特征. 地球科学, 39(1): 37-44. doi: 10.3799/dqkx.2014.004
      张泽明, 丁慧霞, 董昕, 等, 2018. 冈底斯弧的岩浆作用: 从新特提斯俯冲到印度-亚洲碰撞. 地学前缘, 25(6): 78-91. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201806009.htm
      周蒂, 孙珍, 2017. 晚中生代以来太平洋域板块过程及其对东亚陆缘构造研究的启示. 热带海洋学报, 36(3): 1-19. https://www.cnki.com.cn/Article/CJFDTOTAL-RDHY201703001.htm
      周蒂, 孙珍, 陈汉宗, 等, 2005. 南海及其围区中生代岩相古地理和构造演化. 地学前缘, 12(3): 204-218. doi: 10.3321/j.issn:1005-2321.2005.03.022
      邹和平, 李平鲁, 饶春涛, 1995. 珠江口盆地新生代火山岩地球化学特征及其动力学意义. 地球化学, 24(S1): 33-45. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX5S1.004.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)

      Article views (1803) PDF downloads(219) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return