Citation: | Zhang Xiangtao, Xiang Xuhong, Zhao Meng, Cui Yuchi, Zhang Hao, 2022. Coupling Relationship between Pearl River Water System Evolution and East Asian Terrain Inversion. Earth Science, 47(7): 2410-2420. doi: 10.3799/dqkx.2022.002 |
Cao, L. C., Shao, L., Qiao, P. J., et al., 2018. Early Miocene Birth of Modern Pearl River Recorded Low-Relief, High-Elevation Surface Formation of SE Tibetan Plateau. Earth and Planetary Science Letters, 496: 120-131. https://doi.org/10.1016/j.epsl.2018.05.039
|
Clark, M. K., Royden, L. H., 2000. Topographic Ooze: Building the Eastern Margin of Tibet by Lower Crustal Flow. Geology, 28(8): 703-706. https://doi.org/10.1130/0091-7613(2000)28703:tobtem>2.0.co;2 doi: 10.1130/0091-7613(2000)28<703:TOBTEM>2.0.CO;2
|
Cui, Y.C., Cao, L.C., Qiao, P.J., et al., 2018. Provenance Evolution of Paleogene Sequence (Northern South China Sea) Based on Detrital Zircon U-Pb Dating Analysis. Earth Science, 43(11): 4169-4179 (in Chinese with English abstract).
|
Cui, Y. C., Shao, L., Qiao, P. J., et al., 2019. Upper Miocene-Pliocene Provenance Evolution of the Central Canyon in Northwestern South China Sea. Marine Geophysical Research, 40(2): 223-235. https://doi.org/10.1007/S11001-018-9359-2 doi: 10.1007/s11001-018-9359-2
|
Cui, Y. C., Shao, L., Yu, M. M., et al., 2021a. Formation of Hengchun Accretionary Prism Turbidites and Implications for Deep-Water Transport Processes in the Northern South China Sea. Acta Geologica Sinica (English Edition), 95(1): 55-65. https://doi.org/10.1111/1755-6724.14640
|
Cui, Y. C., Shao, L., Li, Z. X., et al., 2021b. A Mesozoic Andean-Type Active Continental Margin along Coastal South China: New Geological Records from the Basement of the Northern South China Sea. Gondwana Research, 99: 36-52. https://doi.org/10.1016/j.gr.2021.06.021
|
He, K.Z., He, H.S., Cai, H.B., 1996. Formation and Evolution of the Western Yunnan Orogenic Belt. Geological Review, 42(2): 97-106 (in Chinese with English abstract).
|
Huang, C. Y., Wang, P. X., Yu, M. M., et al., 2019. Potential Role of Strike-Slip Faults in Opening up the South China Sea. National Science Review, 6(5): 891-901. https://doi.org/10.1093/nsr/nwz119
|
Lei, C., Alves, T. M., Ren, J. Y., et al., 2019. Depositional Architecture and Structural Evolution of a Region Immediately Inboard of the Locus of Continental Breakup (Liwan Sub-Basin, South China Sea). GSA Bulletin, 131(7-8): 1059-1074. https://doi.org/10.1130/B35001.1
|
Li, C., Luo, J.L., Hu, H.Y., et al., 2019. Thermodynamic Impact on Deepwater Sandstone Diagenetic Evolution of Zhuhai Formation in Baiyun Sag, Pearl River Mouth Basin. Earth Science, 44(2): 572-587 (in Chinese with English abstract).
|
Li, X. H., Wei, G. J., Shao, L., et al., 2003. Geochemical and Nd Isotopic Variations in Sediments of the South China Sea: A Response to Cenozoic Tectonism in SE Asia. Earth and Planetary Science Letters, 211(3-4): 207-220. https://doi.org/10.1016/S0012-821X(03)00229-2
|
Li, X.Q., Ding, H.K., Peng, P., et al., 2021. Provenance of Silurian Kepingtage Formation in Tazhong Area, Tarim Basin: Evidence from Detrital Zircon U-Pb Geochronology. Earth Science, 46(8): 2819-2831 (in Chinese with English abstract).
|
Liang, W., Li, X.P., 2020. Lithological Exploration and Potential in Mixed Siliciclastic-Carbonate Depositional Area of Eastern Pearl River Mouth Basin. Earth Science, 45(10): 3870-3884 (in Chinese with English abstract).
|
Liu, C., Clift, P. D., Carter, A., et al., 2017. Controls on Modern Erosion and the Development of the Pearl River Drainage in the Late Paleogene. Marine Geology, 394: 52-68. https://doi.org/10.1016/j.margeo.2017.07.011
|
Lu, H.Y., Guo, Z.T., 2013. Evolution of the Monsoon and Dry Climate in East Asia during Late Cenozoic: A Review. Scientia Sinica Terrae, 43(12): 1907-1918 (in Chinese). doi: 10.1360/zd-2013-43-12-1907
|
Meng, X. B., Shao, L., Cui, Y. C., et al., 2021. Sedimentary Records from Hengchun Accretionary Prism Turbidites on Taiwan Island: Implication on Late Neogene Migration Rate of the Luzon Subduction System. Marine and Petroleum Geology, 124: 104820. https://doi.org/10.1016/j.marpetgeo.2020.104820
|
Mi, L.J., Zhang, X.T., Pang, X., et al., 2019. Formation Mechanism and Petroleum Geology of Pearl River Mouth Basin. Acta Petrolei Sinica, 40(S1): 1-10 (in Chinese with English abstract).
|
Morton, A. C., Hallsworth, C. R., 1999. Processes Controlling the Composition of Heavy Mineral Assemblages in Sandstones. Sedimentary Geology, 124(1-4): 3-29. https://doi.org/10.1016/S0037-0738(98)00118-3
|
Pang, X., Chen, C. M., Peng, D. J., et al., 2007. Sequence Stratigraphy of Deep-Water Fan System of Pearl River, South China Sea. Earth Science Frontiers, 14(1): 220-229. https://doi.org/10.1016/S1872-5791(07)60010-4
|
Royden, L. H., Burchfiel, B. C., van der Hilst, R. D., 2008. The Geological Evolution of the Tibetan Plateau. Science, 321(5892): 1054-1058. https://doi.org/10.1126/science.1155371
|
Shao, L., Cui, Y.C., Qiao, P.J., et al., 2019. Implications on the Early Cenozoic Palaeogeographical Reconstruction of SE Eurasian Margin Based on Northern South China Sea Palaeo-Drainage System Evolution. Journal of Palaeogeography (Chinese Edition), 21(2): 216-231 (in Chinese with English abstract).
|
Shao, L., Cui, Y. C., Stattegger, K., et al., 2019. Drainage Control of Eocene to Miocene Sedimentary Records in the Southeastern Margin of Eurasian Plate. GSA Bulletin, 131(3-4): 461-478. https://doi.org/10.1130/B32053.1
|
Shao, L., Pang, X., Qiao, P.J., et al., 2008. Sedimentary Filling of the Pearl River Mouth Basin and Its Response to the Evolution of the Pearl River. Acta Sedimentologica Sinica, 26(2): 179-185 (in Chinese with English abstract).
|
Shao, L., Qiao, P. J., Zhao, M., et al., 2015. Depositional Characteristics of the Northern South China Sea in Response to the Evolution of the Pearl River. Geological Society, London, Special Publications, 429(1): 31-44. https://doi.org/10.1144/sp429.2
|
Tapponnier, P., Xu, Z. Q., Roger, F., et al., 2001. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 294(5547): 1671-1677. https://doi.org/10.1126/science.105978
|
Wang, C. S., Zhao, X. X., Liu, Z. F., et al., 2008. Constraints on the Early Uplift History of the Tibetan Plateau. PNAS, 105(13): 4987-4992. https://doi.org/10.1073/pnas.0703595105
|
Wang, G.C., Cao, K., Zhang, K.X., et al., 2011. Spatio-Temporal Framework of Tectonic Uplift Stages of the Tibetan Plateau in Cenozoic. Scientia Sinica Terrae, 41(3): 332-349 (in Chinese). doi: 10.1360/zd-2011-41-3-332
|
Wang, G.Z., Wang, C.S., Zeng, Y.F., 1999. Sedimentary Evidence of the Western Yunnan Plateau Uplift since Miocene. Bulletin of Mineralogy, Petrology and Geochemistry, 18(3): 167-170 (in Chinese with English abstract).
|
Wang, P.X., 2005. Cenozoic Deformation and History of Sea-Land Interactions in Asia. Earth Science, 30(1): 1-18 (in Chinese with English abstract).
|
Xiang, X.H., Shao, L., Qiao, P.J., et al., 2011. Characteristics of Heavy Minerals in Pearl River Sediments and Their Implications for Provenance. Marine Geology & Quaternary Geology, 31(6): 27-35 (in Chinese with English abstract).
|
Xiao, G.Q., Zhang, C.X., Guo, Z.T., 2014. Initiation of East Asian Monsoon System Related to Tibetan Plateau Uplift from the Latest Oligocene to the Earliest Miocene. Chinese Journal of Nature, 36(3): 165-169 (in Chinese with English abstract).
|
Xu, X. S., O'Reilly, S. Y., Griffin, W. L., et al., 2007. The Crust of Cathaysia: Age, Assembly and Reworking of Two Terranes. Precambrian Research, 158(1-2): 51-78. https://doi.org/10.1016/j.precamres.2007.04.010
|
Zeng, Q.G., Wang, B.D., Xiluo, L.J., et al., 2020. Suture Zones in Tibetan and Tethys Evolution. Earth Science, 45(8): 2735-2763 (in Chinese with English abstract).
|
Zhang, G. C., Shao, L., Qiao, P. J., et al., 2020. Cretaceous-Palaeogene Sedimentary Evolution of the South China Sea Region: A Preliminary Synthesis. Geological Journal, 55(4): 2662-2683. https://doi.org/10.1002/gj.3533
|
Zhang, H., Cui, Y. C., Qiao, P. J., et al., 2021. Evolution of the Pearl River and Its Implication for East Asian Continental Landscape Reversion. Acta Geologica Sinica (English Edition), 95(1): 66-76. https://doi.org/10.1111/1755-6724.14641
|
Zhang, K.X., Wang, G.C., Hong, H.L., et al., 2013. The Study of the Cenozoic Uplift in the Tibetan Plateau: A Review. Geological Bulletin of China, 32(1): 1-18 (in Chinese with English abstract).
|
Zhang, K.X., Wang, G.C., Ji, J.L., et al., 2010. Paleogene-Neogene Stratigraphic Realm and Sedimentary Sequence of the Qinghai-Tibet Plateau and Their Response to Uplift of the Plateau. Science China Earth Sciences, 53(9): 1271-1294. https://doi.org/10.1007/S11430-010-4048-2
|
Zhang, X.T., Chen, L., She, Q.H., et al., 2012. Provenance Evolution of the Paleo-Hanjian River in the North South China Sea. Marine Geology & Quaternary Geology, 32(4): 41-48 (in Chinese with English abstract).
|
Zhao, M., Shao, L., Qiao, P.J., 2015. Characteristics of Detrital Zircon U-Pb Geochronology of the Pearl River Sands and Its Implication on Provenances. Journal of Tongji University (Natural Science), 43(6): 915-923 (in Chinese with English abstract).
|
Zheng, H.B., Wei, X.C., Wang, P., et al., 2017. Geological Evolution of the Yangtze River. Scientia Sinica Terrae, 47(4): 385-393 (in Chinese). doi: 10.1360/N072017-00003
|
Zhong, L. F., Li, G., Yan, W., et al., 2017. Using Zircon U-Pb Ages to Constrain the Provenance and Transport of Heavy Minerals within the Northwestern Shelf of the South China Sea. Journal of Asian Earth Sciences, 134: 176-190. https://doi.org/10.1016/j.jseaes.2016.11.019
|
Zhu, W. L., Cui, Y. C., Shao, L., et al., 2021. Reinterpretation of the Northern South China Sea Pre- Cenozoic Basement and Geodynamic Implications of the South China Continent: Constraints from Combined Geological and Geophysical Records. Acta Oceanologica Sinica, 40(2): 13-28. https://doi.org/10.1007/S13131-021-1757-7
|
崔宇驰, 曹立成, 乔培军, 等, 2018. 南海北部古近纪沉积物碎屑锆石U-Pb年龄及物源演化. 地球科学, 43(11): 4169-4179. doi: 10.3799/dqkx.2017.594
|
何科昭, 何浩生, 蔡红飙, 1996. 滇西造山带的形成与演化. 地质论评, 42(2): 97-106. doi: 10.3321/j.issn:0371-5736.1996.02.001
|
李弛, 罗静兰, 胡海燕, 等, 2019. 热动力条件对白云凹陷深水区珠海组砂岩成岩演化过程的影响. 地球科学, 44(2): 572-587. doi: 10.3799/dqkx.2017.618
|
李祥权, 丁洪坤, 彭鹏, 等, 2021. 塔里木盆地塔中志留系柯坪塔格组物源示踪: 碎屑锆石U-Pb年代学证据. 地球科学, 46(8): 2819-2831. doi: 10.3799/dqkx.2020.197
|
梁卫, 李小平, 2020. 珠江口盆地东部碎屑岩‒碳酸盐混合沉积区岩性油气藏形成地质条件与潜力. 地球科学, 45(10): 3870-3884. doi: 10.3799/dqkx.2020.174
|
鹿化煜, 郭正堂, 2013. 晚新生代东亚气候变化: 进展与问题. 中国科学: 地球科学, 43(12): 1907-1918. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201312001.htm
|
米立军, 张向涛, 庞雄, 等, 2019. 珠江口盆地形成机制与油气地质. 石油学报, 40(S1): 1-10. doi: 10.7623/syxb2019S1001
|
邵磊, 崔宇驰, 乔培军, 等, 2019. 南海北部古河流演变对欧亚大陆东南缘早新生代古地理再造的启示. 古地理学报, 21(2): 216-231. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201902003.htm
|
邵磊, 庞雄, 乔培军, 等, 2008. 珠江口盆地的沉积充填与珠江的形成演变. 沉积学报, 26(2): 179-185. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200802002.htm
|
王国灿, 曹凯, 张克信, 等, 2011. 青藏高原新生代构造隆升阶段的时空格局. 中国科学: 地球科学, 41(3): 332-349. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201103006.htm
|
王国芝, 王成善, 曾允孚, 1999. 中新世以来滇西高原隆升的沉积学证据. 矿物岩石地球化学通报, 18(3): 167-170. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH903.005.htm
|
汪品先, 2005. 新生代亚洲形变与海陆相互作用. 地球科学, 30(1): 1-18. http://www.earth-science.net/article/id/1447
|
向绪洪, 邵磊, 乔培军, 等, 2011. 珠江流域沉积物重矿物特征及其示踪意义. 海洋地质与第四纪地质, 31(6): 27-35. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201106005.htm
|
肖国桥, 张春霞, 郭正堂, 2014. 晚渐新世‒早中新世青藏高原隆升与东亚季风演化. 自然杂志, 36(3): 165-169.
|
曾庆高, 王保弟, 西洛郎杰, 等, 2020. 西藏的缝合带与特提斯演化. 地球科学, 45(8): 2735-2763. doi: 10.3799/dqkx.2020.152
|
张克信, 王国灿, 洪汉烈, 等, 2013. 青藏高原新生代隆升研究现状. 地质通报, 32(1): 1-18. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201301000.htm
|
张向涛, 陈亮, 佘清华, 等, 2012. 南海北部古韩江物源的演化特征. 海洋地质与第四纪地质, 32(4): 41-48. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201204009.htm
|
赵梦, 邵磊, 乔培军, 2015. 珠江沉积物碎屑锆石U-Pb年龄特征及其物源示踪意义. 同济大学学报(自然科学版), 43(6): 915-923. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201506018.htm
|
郑洪波, 魏晓椿, 王平, 等, 2017. 长江的前世今生. 中国科学: 地球科学, 47(4): 385-393. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201704002.htm
|