• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 5
    May  2024
    Turn off MathJax
    Article Contents
    Zhao Liangjie, Wang Ying, Zhou Yan, Cao Jianwen, Yang Yang, Wang Zhe, 2024. Groundwater Resources Evaluation in the Pearl River Basin Based on SWAT Model. Earth Science, 49(5): 1876-1890. doi: 10.3799/dqkx.2022.004
    Citation: Zhao Liangjie, Wang Ying, Zhou Yan, Cao Jianwen, Yang Yang, Wang Zhe, 2024. Groundwater Resources Evaluation in the Pearl River Basin Based on SWAT Model. Earth Science, 49(5): 1876-1890. doi: 10.3799/dqkx.2022.004

    Groundwater Resources Evaluation in the Pearl River Basin Based on SWAT Model

    doi: 10.3799/dqkx.2022.004
    • Received Date: 2021-11-15
      Available Online: 2024-06-04
    • Publish Date: 2024-05-25
    • On the basis of reviewing the current situation and history of groundwater resources evaluation in the Pearl River basin, this paper discusses the basic principle and basic database of SWAT distributed hydrological model. We divided the Pearl River basin into 129 four-level groundwater systems, and fully considered the parameter sensitivity of karst, bedrock fissures and pore aquifer media. Based on the monthly measured runoff of 9 hydrological stations from 2008 to 2016, we carried out parameter calibration and model calibration, calculated the rainfall assurance rate in different years according to the rainfall from 1957 to 2017, analyzed and evaluated the multi-year groundwater resources in the Pearl River basin. Finally, we carried out the inversion of rainfall infiltration coefficient and groundwater recharge model parameters. Through this assessment, the average recharge of the Pearl River basin from 2010 to 2016 is 148.802 billion m3, and the total recharge of groundwater in extra dry years (2011), normal years (2010) and high water years (2016) are 71.949 billion m3, 144.682 billion m3 and 178.187 billion m3 respectively, of which the rainfall in high water years is about 1.7 times that in extra dry years, the groundwater recharge is 2.48 times, karst. The total annual recharge of bedrock fissure and pore water bearing medium is 52.991 billion m3, 44.513 billion m3 and 51.298 billion m3 respectively. Through parameter inversion, the average annual groundwater recharge modulus is 10.83 L/s·km2 and the rainfall infiltration coefficient is 0.246, in order to provide data support and scientific services for groundwater development, utilization, treatment and protection in the basin.

       

    • loading
    • Adji, T. N., Bahtiar, I. Y., 2016. Rainfall-Discharge Relationship and Karst Flow Components Analysis for Karst Aquifer Characterization in Petoyan Spring, Java, Indonesia. Environmental Earth Sciences, 75(9): 735. https://doi.org/10.1007/s12665-016-5553-1
      Cao, J. H., Yang, H., Zhang, C. L., et al., 2018. Characteristics of Structure and Material Cycling of the Karst Critical Zone in Southwest China. Geological Survey of China, 5(5): 1-12 (in Chinese with English abstract).
      Charlton, M. B., Arnell, N. W., 2011. Adapting to Climate Change Impacts on Water Resources in England-An Assessment of Draft Water Resources Management Plans. Global Environmental Change, 21(1): 238-248. https://doi.org/10.1016/j.gloenvcha.2010.07.012
      Chen, F., Xu, X. Y., Yang, Y., et al., 2020. Investigation on the Evolution Trends and Influencing Factors of Groundwater Resources in China. Advances in Water Science, 31(6): 811-819 (in Chinese with English abstract).
      Chen, T. G., Shi, X. J., Yu, K. F., 2008. The Impacts of Climate Warming on Sea-Level Rise Trends at Pearl River Estuary during 1957-2006. Guangdong Meteorology, 30(2): 1-3 (in Chinese with English abstract). doi: 10.3969/j.issn.1007-6190.2008.02.001
      Estrela, T., Pérez-Martin, M. A., Vargas, E., 2012. Impacts of Climate Change on Water Resources in Spain. Hydrological Sciences Journal, 57(6): 1154-1167. https://doi.org/10.1080/02626667.2012.702213
      Fiorillo, F., 2014. The Recession of Spring Hydrographs, Focused on Karst Aquifers. Water Resources Management, 28(7): 1781-1805. https://doi.org/10.1007/s11269-014-0597-z
      Ghasemizadeh, R., Hellweger, F., Butscher, C., et al., 2012. Review: Groundwater Flow and Transport Modeling of Karst Aquifers, with Particular Reference to the North Coast Limestone Aquifer System of Puerto Rico. Hydrogeology Journal, 20(8): 1441-1461. https://doi.org/10.1007/s10040-012-0897-4
      Guo, J. T., Zhang, Z. Q., Wang, S. P., et al., 2014. Appling SWAT Model to Explore the Impact of Changes in Land Use and Climate on the Streamflow in a Watershed of Northern China. Acta Ecologica Sinica, 34(6): 1559-1567.
      He, Q. H., Yu, D. Q., Yu, S. C., et al., 2021. Changes of Water Resources Amount in Dongting Lake before and after the Operation of the Three Gorges Reservoir. Earth Science, 46(1): 293-307 (in Chinese with English abstract).
      Huang, Q. H., Zhang, W. C., 2004. Improvement and Application of GIS-Based Distributed SWAT Hydrological Modeling on High Altitude, Cold, Semi-Arid Catchment of Heihe River Basin, China. Journal of Nanjing Forestry University, 28(2): 22-26 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-2006.2004.02.005
      Jiang, G. H., 2016. The Research Progress and Developing Tendency of Karst Water. Carsologica Sinica, 35(1): 1-4 (in Chinese with English abstract).
      Jiang, G. H., Guo, F., 2009. Hydrological Character of Epikarst in Southwest China. Hydrogeology & Engineering Geology, 36(5): 89-93 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3665.2009.05.020
      Jiang, Z. C., Yuan, D. X., 1999. Dynamics Features of the Epikarst Zone and Their Significance in Environments and Resources. Acta Geoscientica Sinica, 20(3): 302-308 (in Chinese with English abstract).
      Li, Y. Y., Cao, J. T., Shen, F. X., et al., 2014. The Changes of Renewable Water Resources in China during 1956-2010. Science China Earth Sciences, 44(9): 2030-2038 (in Chinese with English abstract).
      Liang, G. X., Qin, X. Q., Cui, Y. L., et al., 2020. Improvement and Application of a Distributed Hydrological Model in Karst Regions. Hydrogeology & Engineering Geology, 47(2): 60-67 (in Chinese with English abstract).
      Liu, B. J., Chen, X. H., Zeng, Z. F., 2010. Spatial Distribution Law of Rainfall in the Lower Reaches of the Pearl River Basin. Journal of Natural Resources, 25(12): 2123-2131 (in Chinese with English abstract). doi: 10.11849/zrzyxb.2010.12.013
      Liu, L. L., Jiang, T., Xu, J. G., et al., 2012. Responses of Hydrological Processes to Climate Change in the Zhujiang River Basin in the 21st Century. Advances in Climate Change Research, 8(1): 28-34 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-1719.2012.01.005
      Sun, J. L., 2014. Distributed Hydrological Simulation and Reservior Operation Optimization on Suppressing Saline Water of Pearl River Basin (Dissertation). Tianjin University, Tianjin (in Chinese with English abstract).
      Wang, L., Du, H., Xie, J. Z., 2020. SWAT Based Runoff Simulation of Qingshui River Basin in Zhangjiakou City. Journal of Hydroecology, 41(4): 34-40 (in Chinese with English abstract).
      Wang, L., Zhu, Y. S., Ma, H. T., et al., 2015. Study on Groundwater, Development, Utilization and Management in the Pearl River Basin. Pearl River, 36(5): 1-3 (in Chinese with English abstract).
      Wang, Y., 2019. Study on Watershed Boundary Division for Unified Evaluation of Surface Water and Groundwater Resources and Environment in Karst Areas. Carsologica Sinica, 38(6): 823-830 (in Chinese with English abstract).
      Wang, Y., 2020. Evaluation Status and Problems of Groundwater Resource Potential in Yunnan Province. Carsologica Sinica, 39(2): 137-146 (in Chinese with English abstract).
      Wang, Y., Luo, Z. H., Wu, Y., et al., 2019. Urbanization Factors of Groundwater Vulnerability Assessment in Karst Area: A Case Study of Shuicheng Basin. Earth Science, 44(9): 2909-2919 (in Chinese with English abstract).
      Wang, Y. P., Jiang, R. G., Xie, J. C., et al., 2020. Research on the Monthly Runoff Distributed Simulation and Its Application in Jinghe River Basin Based on SWAT Model. Journal of Xi'an University of Technology, 36(2): 135-144, 158 (in Chinese with English abstract).
      Wang, Z. G., Liu, C. M., Huang, Y. B., 2003. The Theory of SWAT Model and Its Application in Heihe Basin. Progress in Geography, 22(1): 79-86 (in Chinese with English abstract). doi: 10.3969/j.issn.1007-6301.2003.01.010
      Xia, R. Y., 2018. Investigation, Evaluation and Exploitation Model of Groundwater Resources in Karst Rock Mountains in Southwest China. China Science Publishing, Beijing (in Chinese).
      Xia, R. Y., Zhao, L. J., Wang, Z., et al., 2020. Study on Water Circulation Mechanism of Typical Karst Underground River System. China Science Publishing, Beijing (in Chinese).
      Xia, R. Y., Zou, S. Z., Tang, J. S., et al., 2017. Technical Key Points of 1: 50 000 Hydrogeological and Environmental Geology Surveys in Katst Areas of South China. Carsologica Sinica, 36(5): 599-608 (in Chinese with English abstract).
      Xu, Y., Wang, S. J., Bai, X. Y., et al., 2018. Simulation of Future Scenarios of Climate Change in the Middle and Upper Reaches of the Peal River Using the Statistical down Scaling Model (SDSM). Carsologica Sinica, 37(2): 228-237 (in Chinese with English abstract).
      Yuan, B. H., Mao, Y., 2001. Groundwater Resources in the Karst Mountainous Area in Southwest Chain. Hydrogeology and Engineering Geology, 28(5): 46-47, 55 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3665.2001.05.012
      Zhang, J. Y., He, R. M., Qi, J., et al., 2013. A New Perspective on Water Issues in North China. Advances in Water Science, 24(3): 303-310 (in Chinese with English abstract).
      Zhao, L. J., 2019. Study of Water Exchange Mechanism of Karst Matrix and Conduit Medium. China University of Geosciences, Beijing (in Chinese).
      Zhao, L. J., Xia, R. Y., Yang, Y., et al., 2017. Discussion and Application of Simulation Methods for Karst Conduit Flow Based on MODFLOW. Carsologica Sinica, 36(3): 346-351 (in Chinese with English abstract).
      Zhou, Z., Wu, J. F., Yang, Y., et al., 2020. Surface Runoff Simulation Based on SWAT Model in Beishan Reservoir Water Shed. South to North Water Transfers and Water Science & Technology, 18(1): 66-73 (in Chinese).
      Zou, S. Z., Zhang, W. H., Liang, B., et al., 2005. A Discussion of the Assessment of Ground Water Vulnerability in Epikarst Zone of the Karst Area, Southwest China. Earth Science Frontiers, 12(S1): 152-158 (in Chinese with English abstract).
      Zou, S. Z., Zhu, M. Q., Tang, J. S., et al., 2006. Water Resources Secirity in Karst Area of Southwest China: Problems and Counterm Easures. Acta Geologica Sinica, 80(10): 1637-1642 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2006.10.020
      曹建华, 杨慧, 张春来, 等, 2018. 中国西南岩溶关键带结构与物质循环特征. 中国地质调查, 5(5): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC201805001.htm
      陈飞, 徐翔宇, 羊艳, 等, 2020. 中国地下水资源演变趋势及影响因素分析. 水科学进展, 31(6): 811-819. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ202006001.htm
      陈特固, 时小军, 余克服, 2008. 近50年全球气候变暖对珠江口海平面变化趋势的影响. 广东气象, 30(2): 1-3. doi: 10.3969/j.issn.1007-6190.2008.02.001
      郭军庭, 张志强, 王盛萍, 等, 2014. 应用SWAT模型研究潮河流域土地利用和气候变化对径流的影响. 生态学报, 34(6): 1559-1567. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201504005.htm
      贺秋华, 余德清, 余姝辰, 等, 2021. 三峡水库运行前后洞庭湖水资源量变化. 地球科学, 46(1): 293-307. doi: 10.3799/dqkx.2020.056
      黄清华, 张万昌, 2004. SWAT分布式水文模型在黑河干流山区流域的改进及应用. 南京林业大学学报(自然科学版), 28(2): 22-26. doi: 10.3969/j.issn.1000-2006.2004.02.005
      姜光辉, 2016. 融合生态学和提升岩溶水数值模拟技术的国际前沿研究. 中国岩溶, 35(1): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201601001.htm
      姜光辉, 郭芳, 2009. 我国西南岩溶区表层岩溶带的水文动态分析. 水文地质工程地质, 36(5): 89-93. doi: 10.3969/j.issn.1000-3665.2009.05.020
      蒋忠诚, 袁道先, 1999. 表层岩溶带的岩溶动力学特征及其环境和资源意义. 地球学报, 20(3): 302-308. doi: 10.3321/j.issn:1006-3021.1999.03.014
      李原园, 曹建廷, 沈福新, 等, 2014.1956—2010年中国可更新水资源量的变化. 中国科学: 地球科学, 44(9): 2030-2038. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201409016.htm
      梁桂星, 覃小群, 崔亚莉, 等, 2020. 分布式水文模型在岩溶地区的改进与应用研究. 水文地质工程地质, 47(2): 60-67. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202002009.htm
      刘丙军, 陈晓宏, 曾照发, 2010. 珠江流域下游地区降水空间分布规律研究. 自然资源学报, 25(12): 2123-2131. doi: 10.11849/zrzyxb.2010.12.013
      刘绿柳, 姜彤, 徐金阁, 等, 2012.21世纪珠江流域水文过程对气候变化的响应. 气候变化研究进展, 8(1): 28-34. https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH201201008.htm
      孙甲岚, 2014. 珠江流域分布式水文模拟及水库压咸优化调度研究. 天津: 天津大学.
      王磊, 杜欢, 谢建治, 2020. 基于SWAT模型的张家口清水河流域径流模拟. 水生态学杂志, 41(4): 34-40. https://www.cnki.com.cn/Article/CJFDTOTAL-SCAN202004005.htm
      王丽, 朱远生, 马海涛, 等, 2015. 珠江地下水资源开发利用变化研究和管理建议. 人民珠江, 36(5): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-RMZJ201505002.htm
      王宇, 2019. 岩溶区地表水与地下水资源及环境统一评价的流域边界划分研究. 中国岩溶, 38(6): 823-830. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201906002.htm
      王宇, 2020. 云南省地下水资源潜力评价现状与问题分析. 中国岩溶, 39(2): 137-146. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202002001.htm
      汪莹, 罗朝晖, 吴亚, 等, 2019. 岩溶地下水脆弱性评价的城镇化因子: 以水城盆地为例. 地球科学, 44(9): 2909-2919. doi: 10.3799/dqkx.2019.135
      王尹萍, 姜仁贵, 解建仓, 等, 2020. 基于SWAT模型的泾河流域月径流分布式模拟. 西安理工大学学报, 36(2): 135-144, 158. https://www.cnki.com.cn/Article/CJFDTOTAL-XALD202002002.htm
      王中根, 刘昌明, 黄友波, 2003. SWAT模型的原理、结构及应用研究. 地理科学进展, 22(1): 79-86. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ200301010.htm
      夏日元, 2018. 西南岩溶石山区地下水资源调查评价与开发利用模式. 北京: 科学出版社.
      夏日元, 赵良杰, 王喆, 等, 2020. 典型岩溶地下河系统水循环机理研究. 北京: 科学出版社.
      夏日元, 邹胜章, 唐建生, 等, 2017. 南方岩溶地区1∶5万水文地质环境地质调查技术要点分析. 中国岩溶, 36(5): 599-608. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201705001.htm
      许燕, 王世杰, 白晓永, 等, 2018. 基于SDSM的珠江中上游气候模拟及未来情景预估. 中国岩溶, 37(2): 228-237. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201802009.htm
      袁丙华, 毛郁, 2001. 西南岩溶石山地区地下水资源. 水文地质工程地质, 28(5): 46-47, 55. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200105012.htm
      张建云, 贺瑞敏, 齐晶, 等, 2013. 关于中国北方水资源问题的再认识. 水科学进展, 24(3): 303-310. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201303001.htm
      赵良杰, 2019. 岩溶裂隙‒管道双重含水介质水流交换机理研究. 北京: 中国地质大学.
      赵良杰, 夏日元, 杨杨, 等, 2017. 基于MODFLOW的岩溶管道水流模拟方法探讨与应用. 中国岩溶, 36(3): 346-351. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201703008.htm
      周铮, 吴剑锋, 杨蕴, 等, 2020. 基于SWAT模型的北山水库流域地表径流模拟. 南水北调与水利科技, 18(1): 66-73. https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD202001012.htm
      邹胜章, 张文慧, 梁彬, 等, 2005. 西南岩溶区表层岩溶带水脆弱性评价指标体系的探讨. 地学前缘, 12(S1): 152-158. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY2005S100P.htm
      邹胜章, 朱明秋, 唐建生, 等, 2006. 西南岩溶区水资源安全与对策. 地质学报, 80(10): 1637-1642. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200610036.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(8)

      Article views (638) PDF downloads(100) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return