Citation: | Zhao Liangjie, Wang Ying, Zhou Yan, Cao Jianwen, Yang Yang, Wang Zhe, 2024. Groundwater Resources Evaluation in the Pearl River Basin Based on SWAT Model. Earth Science, 49(5): 1876-1890. doi: 10.3799/dqkx.2022.004 |
Adji, T. N., Bahtiar, I. Y., 2016. Rainfall-Discharge Relationship and Karst Flow Components Analysis for Karst Aquifer Characterization in Petoyan Spring, Java, Indonesia. Environmental Earth Sciences, 75(9): 735. https://doi.org/10.1007/s12665-016-5553-1
|
Cao, J. H., Yang, H., Zhang, C. L., et al., 2018. Characteristics of Structure and Material Cycling of the Karst Critical Zone in Southwest China. Geological Survey of China, 5(5): 1-12 (in Chinese with English abstract).
|
Charlton, M. B., Arnell, N. W., 2011. Adapting to Climate Change Impacts on Water Resources in England-An Assessment of Draft Water Resources Management Plans. Global Environmental Change, 21(1): 238-248. https://doi.org/10.1016/j.gloenvcha.2010.07.012
|
Chen, F., Xu, X. Y., Yang, Y., et al., 2020. Investigation on the Evolution Trends and Influencing Factors of Groundwater Resources in China. Advances in Water Science, 31(6): 811-819 (in Chinese with English abstract).
|
Chen, T. G., Shi, X. J., Yu, K. F., 2008. The Impacts of Climate Warming on Sea-Level Rise Trends at Pearl River Estuary during 1957-2006. Guangdong Meteorology, 30(2): 1-3 (in Chinese with English abstract). doi: 10.3969/j.issn.1007-6190.2008.02.001
|
Estrela, T., Pérez-Martin, M. A., Vargas, E., 2012. Impacts of Climate Change on Water Resources in Spain. Hydrological Sciences Journal, 57(6): 1154-1167. https://doi.org/10.1080/02626667.2012.702213
|
Fiorillo, F., 2014. The Recession of Spring Hydrographs, Focused on Karst Aquifers. Water Resources Management, 28(7): 1781-1805. https://doi.org/10.1007/s11269-014-0597-z
|
Ghasemizadeh, R., Hellweger, F., Butscher, C., et al., 2012. Review: Groundwater Flow and Transport Modeling of Karst Aquifers, with Particular Reference to the North Coast Limestone Aquifer System of Puerto Rico. Hydrogeology Journal, 20(8): 1441-1461. https://doi.org/10.1007/s10040-012-0897-4
|
Guo, J. T., Zhang, Z. Q., Wang, S. P., et al., 2014. Appling SWAT Model to Explore the Impact of Changes in Land Use and Climate on the Streamflow in a Watershed of Northern China. Acta Ecologica Sinica, 34(6): 1559-1567.
|
He, Q. H., Yu, D. Q., Yu, S. C., et al., 2021. Changes of Water Resources Amount in Dongting Lake before and after the Operation of the Three Gorges Reservoir. Earth Science, 46(1): 293-307 (in Chinese with English abstract).
|
Huang, Q. H., Zhang, W. C., 2004. Improvement and Application of GIS-Based Distributed SWAT Hydrological Modeling on High Altitude, Cold, Semi-Arid Catchment of Heihe River Basin, China. Journal of Nanjing Forestry University, 28(2): 22-26 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-2006.2004.02.005
|
Jiang, G. H., 2016. The Research Progress and Developing Tendency of Karst Water. Carsologica Sinica, 35(1): 1-4 (in Chinese with English abstract).
|
Jiang, G. H., Guo, F., 2009. Hydrological Character of Epikarst in Southwest China. Hydrogeology & Engineering Geology, 36(5): 89-93 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3665.2009.05.020
|
Jiang, Z. C., Yuan, D. X., 1999. Dynamics Features of the Epikarst Zone and Their Significance in Environments and Resources. Acta Geoscientica Sinica, 20(3): 302-308 (in Chinese with English abstract).
|
Li, Y. Y., Cao, J. T., Shen, F. X., et al., 2014. The Changes of Renewable Water Resources in China during 1956-2010. Science China Earth Sciences, 44(9): 2030-2038 (in Chinese with English abstract).
|
Liang, G. X., Qin, X. Q., Cui, Y. L., et al., 2020. Improvement and Application of a Distributed Hydrological Model in Karst Regions. Hydrogeology & Engineering Geology, 47(2): 60-67 (in Chinese with English abstract).
|
Liu, B. J., Chen, X. H., Zeng, Z. F., 2010. Spatial Distribution Law of Rainfall in the Lower Reaches of the Pearl River Basin. Journal of Natural Resources, 25(12): 2123-2131 (in Chinese with English abstract). doi: 10.11849/zrzyxb.2010.12.013
|
Liu, L. L., Jiang, T., Xu, J. G., et al., 2012. Responses of Hydrological Processes to Climate Change in the Zhujiang River Basin in the 21st Century. Advances in Climate Change Research, 8(1): 28-34 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-1719.2012.01.005
|
Sun, J. L., 2014. Distributed Hydrological Simulation and Reservior Operation Optimization on Suppressing Saline Water of Pearl River Basin (Dissertation). Tianjin University, Tianjin (in Chinese with English abstract).
|
Wang, L., Du, H., Xie, J. Z., 2020. SWAT Based Runoff Simulation of Qingshui River Basin in Zhangjiakou City. Journal of Hydroecology, 41(4): 34-40 (in Chinese with English abstract).
|
Wang, L., Zhu, Y. S., Ma, H. T., et al., 2015. Study on Groundwater, Development, Utilization and Management in the Pearl River Basin. Pearl River, 36(5): 1-3 (in Chinese with English abstract).
|
Wang, Y., 2019. Study on Watershed Boundary Division for Unified Evaluation of Surface Water and Groundwater Resources and Environment in Karst Areas. Carsologica Sinica, 38(6): 823-830 (in Chinese with English abstract).
|
Wang, Y., 2020. Evaluation Status and Problems of Groundwater Resource Potential in Yunnan Province. Carsologica Sinica, 39(2): 137-146 (in Chinese with English abstract).
|
Wang, Y., Luo, Z. H., Wu, Y., et al., 2019. Urbanization Factors of Groundwater Vulnerability Assessment in Karst Area: A Case Study of Shuicheng Basin. Earth Science, 44(9): 2909-2919 (in Chinese with English abstract).
|
Wang, Y. P., Jiang, R. G., Xie, J. C., et al., 2020. Research on the Monthly Runoff Distributed Simulation and Its Application in Jinghe River Basin Based on SWAT Model. Journal of Xi'an University of Technology, 36(2): 135-144, 158 (in Chinese with English abstract).
|
Wang, Z. G., Liu, C. M., Huang, Y. B., 2003. The Theory of SWAT Model and Its Application in Heihe Basin. Progress in Geography, 22(1): 79-86 (in Chinese with English abstract). doi: 10.3969/j.issn.1007-6301.2003.01.010
|
Xia, R. Y., 2018. Investigation, Evaluation and Exploitation Model of Groundwater Resources in Karst Rock Mountains in Southwest China. China Science Publishing, Beijing (in Chinese).
|
Xia, R. Y., Zhao, L. J., Wang, Z., et al., 2020. Study on Water Circulation Mechanism of Typical Karst Underground River System. China Science Publishing, Beijing (in Chinese).
|
Xia, R. Y., Zou, S. Z., Tang, J. S., et al., 2017. Technical Key Points of 1: 50 000 Hydrogeological and Environmental Geology Surveys in Katst Areas of South China. Carsologica Sinica, 36(5): 599-608 (in Chinese with English abstract).
|
Xu, Y., Wang, S. J., Bai, X. Y., et al., 2018. Simulation of Future Scenarios of Climate Change in the Middle and Upper Reaches of the Peal River Using the Statistical down Scaling Model (SDSM). Carsologica Sinica, 37(2): 228-237 (in Chinese with English abstract).
|
Yuan, B. H., Mao, Y., 2001. Groundwater Resources in the Karst Mountainous Area in Southwest Chain. Hydrogeology and Engineering Geology, 28(5): 46-47, 55 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3665.2001.05.012
|
Zhang, J. Y., He, R. M., Qi, J., et al., 2013. A New Perspective on Water Issues in North China. Advances in Water Science, 24(3): 303-310 (in Chinese with English abstract).
|
Zhao, L. J., 2019. Study of Water Exchange Mechanism of Karst Matrix and Conduit Medium. China University of Geosciences, Beijing (in Chinese).
|
Zhao, L. J., Xia, R. Y., Yang, Y., et al., 2017. Discussion and Application of Simulation Methods for Karst Conduit Flow Based on MODFLOW. Carsologica Sinica, 36(3): 346-351 (in Chinese with English abstract).
|
Zhou, Z., Wu, J. F., Yang, Y., et al., 2020. Surface Runoff Simulation Based on SWAT Model in Beishan Reservoir Water Shed. South to North Water Transfers and Water Science & Technology, 18(1): 66-73 (in Chinese).
|
Zou, S. Z., Zhang, W. H., Liang, B., et al., 2005. A Discussion of the Assessment of Ground Water Vulnerability in Epikarst Zone of the Karst Area, Southwest China. Earth Science Frontiers, 12(S1): 152-158 (in Chinese with English abstract).
|
Zou, S. Z., Zhu, M. Q., Tang, J. S., et al., 2006. Water Resources Secirity in Karst Area of Southwest China: Problems and Counterm Easures. Acta Geologica Sinica, 80(10): 1637-1642 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2006.10.020
|
曹建华, 杨慧, 张春来, 等, 2018. 中国西南岩溶关键带结构与物质循环特征. 中国地质调查, 5(5): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC201805001.htm
|
陈飞, 徐翔宇, 羊艳, 等, 2020. 中国地下水资源演变趋势及影响因素分析. 水科学进展, 31(6): 811-819. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ202006001.htm
|
陈特固, 时小军, 余克服, 2008. 近50年全球气候变暖对珠江口海平面变化趋势的影响. 广东气象, 30(2): 1-3. doi: 10.3969/j.issn.1007-6190.2008.02.001
|
郭军庭, 张志强, 王盛萍, 等, 2014. 应用SWAT模型研究潮河流域土地利用和气候变化对径流的影响. 生态学报, 34(6): 1559-1567. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201504005.htm
|
贺秋华, 余德清, 余姝辰, 等, 2021. 三峡水库运行前后洞庭湖水资源量变化. 地球科学, 46(1): 293-307. doi: 10.3799/dqkx.2020.056
|
黄清华, 张万昌, 2004. SWAT分布式水文模型在黑河干流山区流域的改进及应用. 南京林业大学学报(自然科学版), 28(2): 22-26. doi: 10.3969/j.issn.1000-2006.2004.02.005
|
姜光辉, 2016. 融合生态学和提升岩溶水数值模拟技术的国际前沿研究. 中国岩溶, 35(1): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201601001.htm
|
姜光辉, 郭芳, 2009. 我国西南岩溶区表层岩溶带的水文动态分析. 水文地质工程地质, 36(5): 89-93. doi: 10.3969/j.issn.1000-3665.2009.05.020
|
蒋忠诚, 袁道先, 1999. 表层岩溶带的岩溶动力学特征及其环境和资源意义. 地球学报, 20(3): 302-308. doi: 10.3321/j.issn:1006-3021.1999.03.014
|
李原园, 曹建廷, 沈福新, 等, 2014.1956—2010年中国可更新水资源量的变化. 中国科学: 地球科学, 44(9): 2030-2038. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201409016.htm
|
梁桂星, 覃小群, 崔亚莉, 等, 2020. 分布式水文模型在岩溶地区的改进与应用研究. 水文地质工程地质, 47(2): 60-67. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202002009.htm
|
刘丙军, 陈晓宏, 曾照发, 2010. 珠江流域下游地区降水空间分布规律研究. 自然资源学报, 25(12): 2123-2131. doi: 10.11849/zrzyxb.2010.12.013
|
刘绿柳, 姜彤, 徐金阁, 等, 2012.21世纪珠江流域水文过程对气候变化的响应. 气候变化研究进展, 8(1): 28-34. https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH201201008.htm
|
孙甲岚, 2014. 珠江流域分布式水文模拟及水库压咸优化调度研究. 天津: 天津大学.
|
王磊, 杜欢, 谢建治, 2020. 基于SWAT模型的张家口清水河流域径流模拟. 水生态学杂志, 41(4): 34-40. https://www.cnki.com.cn/Article/CJFDTOTAL-SCAN202004005.htm
|
王丽, 朱远生, 马海涛, 等, 2015. 珠江地下水资源开发利用变化研究和管理建议. 人民珠江, 36(5): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-RMZJ201505002.htm
|
王宇, 2019. 岩溶区地表水与地下水资源及环境统一评价的流域边界划分研究. 中国岩溶, 38(6): 823-830. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201906002.htm
|
王宇, 2020. 云南省地下水资源潜力评价现状与问题分析. 中国岩溶, 39(2): 137-146. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202002001.htm
|
汪莹, 罗朝晖, 吴亚, 等, 2019. 岩溶地下水脆弱性评价的城镇化因子: 以水城盆地为例. 地球科学, 44(9): 2909-2919. doi: 10.3799/dqkx.2019.135
|
王尹萍, 姜仁贵, 解建仓, 等, 2020. 基于SWAT模型的泾河流域月径流分布式模拟. 西安理工大学学报, 36(2): 135-144, 158. https://www.cnki.com.cn/Article/CJFDTOTAL-XALD202002002.htm
|
王中根, 刘昌明, 黄友波, 2003. SWAT模型的原理、结构及应用研究. 地理科学进展, 22(1): 79-86. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ200301010.htm
|
夏日元, 2018. 西南岩溶石山区地下水资源调查评价与开发利用模式. 北京: 科学出版社.
|
夏日元, 赵良杰, 王喆, 等, 2020. 典型岩溶地下河系统水循环机理研究. 北京: 科学出版社.
|
夏日元, 邹胜章, 唐建生, 等, 2017. 南方岩溶地区1∶5万水文地质环境地质调查技术要点分析. 中国岩溶, 36(5): 599-608. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201705001.htm
|
许燕, 王世杰, 白晓永, 等, 2018. 基于SDSM的珠江中上游气候模拟及未来情景预估. 中国岩溶, 37(2): 228-237. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201802009.htm
|
袁丙华, 毛郁, 2001. 西南岩溶石山地区地下水资源. 水文地质工程地质, 28(5): 46-47, 55. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200105012.htm
|
张建云, 贺瑞敏, 齐晶, 等, 2013. 关于中国北方水资源问题的再认识. 水科学进展, 24(3): 303-310. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201303001.htm
|
赵良杰, 2019. 岩溶裂隙‒管道双重含水介质水流交换机理研究. 北京: 中国地质大学.
|
赵良杰, 夏日元, 杨杨, 等, 2017. 基于MODFLOW的岩溶管道水流模拟方法探讨与应用. 中国岩溶, 36(3): 346-351. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201703008.htm
|
周铮, 吴剑锋, 杨蕴, 等, 2020. 基于SWAT模型的北山水库流域地表径流模拟. 南水北调与水利科技, 18(1): 66-73. https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD202001012.htm
|
邹胜章, 张文慧, 梁彬, 等, 2005. 西南岩溶区表层岩溶带水脆弱性评价指标体系的探讨. 地学前缘, 12(S1): 152-158. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY2005S100P.htm
|
邹胜章, 朱明秋, 唐建生, 等, 2006. 西南岩溶区水资源安全与对策. 地质学报, 80(10): 1637-1642. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200610036.htm
|