• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 5
    May  2022
    Turn off MathJax
    Article Contents
    Yao Chengpeng, Fu Haijiao, Ma Yingzhe, Yan Detian, Wang Hu, Li Yueguo, Wang Jiawei, 2022. Development Characteristics of Deep Shale Fractured Veins and Vein Forming Fluid Activities in Luzhou Block. Earth Science, 47(5): 1684-1693. doi: 10.3799/dqkx.2022.021
    Citation: Yao Chengpeng, Fu Haijiao, Ma Yingzhe, Yan Detian, Wang Hu, Li Yueguo, Wang Jiawei, 2022. Development Characteristics of Deep Shale Fractured Veins and Vein Forming Fluid Activities in Luzhou Block. Earth Science, 47(5): 1684-1693. doi: 10.3799/dqkx.2022.021

    Development Characteristics of Deep Shale Fractured Veins and Vein Forming Fluid Activities in Luzhou Block

    doi: 10.3799/dqkx.2022.021
    • Received Date: 2022-01-05
    • Publish Date: 2022-05-25
    • Fracture veins contain important information such as natural fracture evolution and paleo-fluid injection activities, which is also indicative of the preservation conditions of deep shale gas. In this paper, the development characteristics of fractures and veins in the deep shale of Longmaxi Formation in Luzhou block were analyzed by means of optical thin section, cathode luminescence, fluid inclusion and in-situ microanalysis, and the activity of vein-forming fluid and its diagenetic environment evolution were studied, and the preservation conditions of shale gas were discussed. It is found that the deep shale fracture vein is mainly a composite vein composed of quartz, dolomite or calcite, showing a complex cutting relationship between different minerals, a large number of brine inclusions and high-density methane inclusions are developed, and the fracture vein is mainly formed in a reducing environment. On the whole, under the background of tectonic uplift, the deep shale fractures began to form and were in the process of continuous opening or closing. The three stages of paleo-fluid with different properties were filled and cemented for many times, and the closed diagenetic system was favorable for the preservation of the deep shale gas.

       

    • loading
    • Chen, X., Fan, J. X., Zhang, Y. D., et al., 2015. Subdivision and Delineation of the Wufeng and Lungmachi Black Shales in the Subsurface Areas of the Yangtze Platform. Journal of Stratigraphy, 39(4): 351-358 (in Chinese with English abstract).
      Dong, D. Z., Cheng, K. M., Wang, Y. M., et al., 2010. Forming Conditions and Characteristics of Shale Gas in the Lower Paleozoic of the Upper Yangtze Region, China. Oil & Gas Geology, 31(3): 288-299, 308 (in Chinese with English abstract).
      Evans, M. A., 1995. Fluid Inclusions in Veins from the Middle Devonian Shales: A Record of Deformation Conditions and Fluid Evolution in the Appalachian Plateau. Geological Society of America Bulletin, 107(3): 327-339. doi: 10.1130/0016-7606(1995)107<0327:FIIVFT>2.3.CO;2
      Gale, J. F. W., Laubach, S. E., Olson, J. E., et al., 2014. Natural Fractures in Shale: A Review and New Observations. AAPG Bulletin, 98(11): 2165-2216. https://doi.org/10.1306/08121413151
      Guo, W. X., Tang, J. M., Ouyang, J. S., et al., 2021. Characteristics of Structural Deformation in the Southern Sichuan Basin and Its Relationship with the Storage Condition of Shale Gas. Natural Gas Industry, 41(5): 11-19 (in Chinese with English abstract).
      He, Z. L., Nie, H. K., Hu, D. F., et al., 2020. Geological Problems in the Effective Development of Deep Shale Gas: A Case Study of Upper Ordovician Wufeng-Lower Silurian Longmaxi Formations in Sichuan Basin and Its Periphery. Acta Petrolei Sinica, 41(4): 379-391 (in Chinese with English abstract).
      Hu, X. M., Wang, C. S., 2001. Summarization on the Studying Methods of the Palaeo-Ocean Dissolved Oxygen. Advance in Earth Sciences, 16(1): 65-71(in Chinese with English abstract).
      Li, W., He, S., Zhang, B. Q., et al., 2018. Characteristics of Paleo-Temperature and Paleo-Pressure of Fluid Inclusions in Shale Composite Veins of Longmaxi Formation at the Western Margin of Jiaoshiba Anticline. Acta Petrolei Sinica, 39(4): 402-415 (in Chinese with English abstract).
      Liang, C., Jiang, Z. X., Yang, Y. T., et al., 2012. Characteristics of Shale Lithofacies and Reservoir Space of the Wufeng-Longmaxi Formation, Sichuan Basin. Petroleum Exploration and Development, 39(6): 691-698 (in Chinese with English abstract).
      Liu, L., He, S., Zhai, G. Y., et al., 2019. Diagenetic Environment Evolution of Fracture Veins of Shale Core in Second Member of Niutitang Formation in Southern Limb of Huangling Anticline and Its Connection with Shale Gas Preservation. Earth Science, 44(11): 3583-3597 (in Chinese with English abstract).
      Ma, X. H., 2018. Enrichment Laws and Scale Effective Development of Shale Gas in the Southern Sichuan Basin. Natural Gas Industry, 38(10): 1-10 (in Chinese with English abstract).
      Nie, H. K., He, Z. L., Liu, G. X., et al., 2020. Genetic Mechanism of High-Quality Shale Gas Reservoirs in the Wufeng-Longmaxi Fms in the Sichuan Basin. Natural Gas Industry, 40(6): 31-41 (in Chinese with English abstract).
      Nie, H. K., Jin, Z. J., Ma, X., et al., 2017. Graptolites Zone and Sedimentary Characteristics of Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation in Sichuan Basin and Its Adjacent Areas. Acta Petrolei Sinica, 38(2): 160-174 (in Chinese with English abstract).
      Pan, Z. K., Liu, D. D., Huang, Z. X., et al., 2019. Paleotemperature and Paleopressure of Methane Inclusions in Fracture Cements from the Wufeng-Longmaxi Shales in the Luzhou Area, Southern Sichuan Basin. Petroleum Science Bulletin, 4(3): 242-253 (in Chinese with English abstract).
      Shu, Z. H., 2018. Fracture Feature of Gas-Bearing Shale Intervals of Wufeng-Longmaxi Formation in Fuling Shale Gas Field and Its Effect. Sino-Global Energy, 23(11): 30-35 (in Chinese with English abstract).
      Tang, X., 2018. Tectonic Control of Shale Gas Accumulation in Longmaxi Formation in the Southern Sichuan Basin (Dissertation). China University of Mining & Technology, Xuzhou (in Chinese with English abstract).
      Zhang, J. L., Qiao, S. H., Lu, W. J., et al., 2016. An Equation for Determining Methane Densities in Fluid Inclusions with Raman Shifts. Journal of Geochemical Exploration, 171: 20-28. doi: 10.1016/j.gexplo.2015.12.003
      Zhou, Z., Liu, W. P., Jiang, L., et al., 2020. Multiple Fluid-Flow of the Wufeng-Longmaxi Formation in the Changning Shale-Gas Field, Southern Sichuan Basin. Shandong Chemical Industry, 49(2): 144-147, 151(in Chinese with English abstract).
      Yang, W., He, S., Su, A., et al., 2021. Paleo-Temperature and -Pressure Characteristics of Fluid Inclusions in Composite Veins of the Doushantuo Shale (Yichang Area, South China): Implications for the Preservation and Enrichment of Shale Gas. Energy & Fuels, 35(5): 4091-4105.
      陈旭, 樊隽轩, 张元动, 等, 2015. 五峰组及龙马溪组黑色页岩在扬子覆盖区内的划分与圈定. 地层学杂志, 39(4): 351-358. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201504001.htm
      董大忠, 程克明, 王玉满, 等, 2010. 中国上扬子区下古生界页岩气形成条件及特征. 石油与天然气地质, 31(3): 288-299, 308. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201003008.htm
      郭卫星, 唐建明, 欧阳嘉穗, 等, 2021. 四川盆地南部构造变形特征及其与页岩气保存条件的关系. 天然气工业, 41(5): 11-19. doi: 10.3787/j.issn.1000-0976.2021.05.002
      何治亮, 聂海宽, 胡东风, 等, 2020. 深层页岩气有效开发中的地质问题: 以四川盆地及其周缘五峰组‒龙马溪组为例. 石油学报, 41(4): 379-391. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202004003.htm
      胡修棉, 王成善, 2001. 古海洋溶解氧研究方法综述. 地球科学进展, 16(1): 65-71. doi: 10.3321/j.issn:1001-8166.2001.01.013
      李文, 何生, 张柏桥, 等, 2018. 焦石坝背斜西缘龙马溪组页岩复合脉体中流体包裹体的古温度及古压力特征. 石油学报, 39(4): 402-415. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201804004.htm
      梁超, 姜在兴, 杨镱婷, 等, 2012. 四川盆地五峰组‒龙马溪组页岩岩相及储集空间特征. 石油勘探与开发, 39(6): 691-698. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201206007.htm
      刘力, 何生, 翟刚毅, 等, 2019. 黄陵背斜南翼牛蹄塘组二段页岩岩心裂缝脉体成岩环境演化与页岩气保存. 地球科学, 44(11): 3583-3597. doi: 10.3799/dqkx.2019.142
      马新华, 2018. 四川盆地南部页岩气富集规律与规模有效开发探索. 天然气工业, 38(10): 1-10. doi: 10.3787/j.issn.1000-0976.2018.10.001
      聂海宽, 何治亮, 刘光祥, 等, 2020. 四川盆地五峰组‒龙马溪组页岩气优质储层成因机制. 天然气工业, 40(6): 31-41. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202006004.htm
      聂海宽, 金之钧, 马鑫, 等, 2017. 四川盆地及邻区上奥陶统五峰组‒下志留统龙马溪组底部笔石带及沉积特征. 石油学报, 38(2): 160-174. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201702004.htm
      潘占昆, 刘冬冬, 黄治鑫, 等, 2019. 川南地区泸州区块五峰组‒龙马溪组页岩裂缝脉体中甲烷包裹体分析及古温压恢复. 石油科学通报, 4(3): 242-253. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE201903003.htm
      舒志恒, 2018. 涪陵页岩气田五峰组‒龙马溪组含气页岩段裂缝发育特征及其影响. 中外能源, 23(11): 30-35. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZW201811006.htm
      唐鑫, 2018. 川南地区龙马溪组页岩气成藏的构造控制(博士学位论文). 徐州: 中国矿业大学.
      周政, 刘文平, 姜磊, 等, 2020. 川南长宁页岩气田五峰‒龙马溪组多期流体活动特征. 山东化工, 49(2): 144-147, 151. https://www.cnki.com.cn/Article/CJFDTOTAL-SDHG202002054.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(3)

      Article views (1234) PDF downloads(108) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return