• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 10
    Oct.  2023
    Turn off MathJax
    Article Contents
    Zhao Jingbo, Pan Yuelong, Li Jiebiao, Wu Qun, Liu Yu, Ji Ruili, Zhou Zhichao, 2023. Inverse Modeling of Parameterized Hydraulic Conductivity Field in a Fractured Medium Based on Pilot Point Method. Earth Science, 48(10): 3878-3895. doi: 10.3799/dqkx.2022.031
    Citation: Zhao Jingbo, Pan Yuelong, Li Jiebiao, Wu Qun, Liu Yu, Ji Ruili, Zhou Zhichao, 2023. Inverse Modeling of Parameterized Hydraulic Conductivity Field in a Fractured Medium Based on Pilot Point Method. Earth Science, 48(10): 3878-3895. doi: 10.3799/dqkx.2022.031

    Inverse Modeling of Parameterized Hydraulic Conductivity Field in a Fractured Medium Based on Pilot Point Method

    doi: 10.3799/dqkx.2022.031
    • Received Date: 2021-09-05
      Available Online: 2023-10-31
    • Publish Date: 2023-10-25
    • For the underground engineering site in a fractured rock mass, the hydraulic conductivity is a critical factor influencing hydrogeological conditions and plays a pivotal role in the final assessment of site performance. This study focuses on the granite formation of nuclear facility site in the coastal area, China. It applied the Pilot Point calibration technique in conjunction with a 3D kriging interpolation method to establish a parameterized hydraulic conductivity field for the fractured medium. Besides, the inverse parameter estimation tool PEST for automated calibration and sensitivity analysis was employed. The results indicate that the simulated hydraulic heads were in a good agreement with the measured data in the steady condition, and well reproduced dynamic behavior of groundwater level with time. Notably, the hydraulic conductivity filed could be estimated more accurately around the boreholes and the parameter sensitivity was related with borehole location, borehole quantity and variogram range. Based on these findings, it could conclude that Pilot Point method could identify spatial difference of hydraulic conductivity filed in the fractured rocks. It is positive to further improve the groundwater flow prediction ability in the fracture medium.

       

    • loading
    • Anderson, M. P., Woessner, W. W., Hunt, R. J., 2015. Applied Groundwater Modeling: Simulation of Flow and Advective Transport. Academic Press, San Diego.
      Blessent, D., Therrien, R., Lemieux, J. M., 2011. Inverse Modeling of Hydraulic Tests in Fractured Crystalline Rock Based on a Transition Probability Geostatistical Approach. Water Resources Research, 47(12): W12530. https://doi.org/10.1029/2011wr011037
      Carle, S. F., Fogg, G. E., 1996. Transition Probability-Based Indicator Geostatistics. Mathematical Geology, 28(4): 453-476. https://doi.org/10.1007/BF02083656
      Carniato, L., Schoups, G., Giesen, N., et al., 2015. Highly Parameterized Inversion of Groundwater Reactive Transport for a Complex Field Site. Journal of Contaminant Hydrology, 173: 38-58. https://doi.org/10.1016/j.jconhyd.2014.12.001
      Chen, Y. F., Ling, X. M., Liu, M. M., et al., 2018. Statistical Distribution of Hydraulic Conductivity of Rocks in Deep-Incised Valleys, Southwest China. Journal of Hydrology, 566: 216-226. https://doi.org/10.1016/j.jhydrol.2018.09.016
      China Geological Survey, 2012. Hydrogeological Manual (2nd Edition). Geological Publishing House, Beijing, 680-684 (in Chinese).
      Clifton, P. M., Neuman, S. P., 1982. Effects of Kriging and Inverse Modeling on Conditional Simulation of the Avra Valley Aquifer in Southern Arizona. Water Resources Research, 18(4): 1215-1234. https://doi.org/10.1029/wr018i004p01215
      De Marsily, G., Lavedan, G., Boucher, M., et al., 1984. Interpretation of Interference Tests in a Well Field Using Geostatistical Techniques to Fit the Permeability Distribution in a Reservoir Model. Geostatistics for Natural Resources Characterization. Springer Netherlands, Dordrecht, 831-849. https://doi.org/10.1007/978-94-009-3701-7_16
      Deutsch, C. V., Journel, A. G., 1998. GSLIB: Geostatistical Software and User's Guide (Second Edition). Oxford University Press, New York.
      Doherty, J., 2015. Calibration and Uncertainty Analysis for Complex Environmental Models. Watermark Numerical Computing, Brisbane, Australia.
      El Idrysy, E. H., Smedt, F., 2007. A Comparative Study of Hydraulic Conductivity Estimations Using Geostatistics. Hydrogeology Journal, 15(3): 459-470. https://doi.org/10.1007/s10040-007-0166-0
      Fang, K., Ji, X., Shen, C., et al., 2019. Combining a Land Surface Model with Groundwater Model Calibration to Assess the Impacts of Groundwater Pumping in a Mountainous Desert Basin. Advances in Water Resources, 130: 12-28. https://doi.org/10.1016/j.advwatres.2019.05.008
      Finsterle, S., 2006. Demonstration of Optimization Techniques for Groundwater Plume Remediation Using iTOUGH2. Environmental Modelling & Software, 21(5): 665-680. https://doi.org/10.1016/j.envsoft.2004.11.012
      Follin, S., Hartley, L., Rhén, I., et al., 2014. A Methodology to Constrain the Parameters of a Hydrogeological Discrete Fracture Network Model for Sparsely Fractured Crystalline Rock, Exemplified by Data from the Proposed High-Level Nuclear Waste Repository Site at Forsmark, Sweden. Hydrogeology Journal, 22(2): 313-331. https://doi.org/10.1007/s10040-013-1080-2
      Gu, W. Z., Pang, Z. H., Wang, Q. J., et al., 2011. Isotope Hydrology. Science Press, Beijing, 432(in Chinese).
      Guo, Y. H., Wang, J., Jin, Y. X., 2001. The General Situation of Geological Disposal Repository Siting in the World and Research Progress in China. Earth Science Frontiers, 8(2): 327-332(in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2001.02.017
      Hartley, L., Joyce, S., 2013. Approaches and Algorithms for Groundwater Flow Modeling in Support of Site Investigations and Safety Assessment of the Forsmark Site, Sweden. Journal of Hydrology, 500: 200-216. https://doi.org/10.1016/j.jhydrol.2013.07.031
      Huo, S. Y., Jin, M. G., 2017. Effect of Parameter Sensitivity of van Genuchten Model on Numerical Simulation of Rainfall Recharge. Earth Science, 42(3): 447-452 (in Chinese with English abstract).
      Jiang, L. Q., Sun, R. L., Liang, X., 2021. Predicting Groundwater Flow and Transport in the Heterogeneous Aquifer Sandbox Using Different Parameter Estimation Methods. Earth Science, 46(11): 4150-4160 (in Chinese with English abstract).
      Kapoor, A., Kashyap, D., 2021. Parameterization of Pilot Point Methodology for Supplementing Sparse Transmissivity Data. Water, 13(15): 2082. https://doi.org/10.3390/w13152082
      Keller, J., Franssen, H., Nowak, W., 2021. Investigating the Pilot Point Ensemble Kalman Filter for Geostatistical Inversion and Data Assimilation. Advances in Water Resources, 155: 104010. https://doi.org/10.1016/j.advwatres.2021.104010
      Li, Y. G., Lan, J. K., Li, R. L., et al., 2016. Permeability Coefficients of Weathering Zones in Huashan Granite of Guangxi. Journal of Guilin University of Technology, 36(4): 681-687(in Chinese with English abstract). doi: 10.3969/j.issn.1674-9057.2016.04.006
      Maji, R., Sudicky, E. A., Panday, S., et al., 2006. Transition Probability/Markov Chain Analyses of DNAPL Source Zones and Plumes. Ground Water, 44(6): 853-863. https://doi.org/10.1111/j.1745-6584.2005.00194.x
      Park, Y. J., Sudicky, E. A., McLaren, R. G., et al., 2004. Analysis of Hydraulic and Tracer Response Tests within Moderately Fractured Rock Based on a Transition Probability Geostatistical Approach. Water Resources Research, 40(12): W12404. https://doi.org/10.1029/2004wr003188
      Poeter, E. P., Hill, M. C., 1999. UCODE, a Computer Code for Universal Inverse Modeling. Computers & Geosciences, 25(4): 457-462. https://doi.org/10.1016/s0098-3004(98)00149-6
      Rubin, Y., Gómez-Hernández, J. J., 1990. A Stochastic Approach to the Problem of Upscaling of Conductivity in Disordered Media: Theory and Unconditional Numerical Simulations. Water Resources Research, 26(4): 691-701. https://doi.org/10.1029/wr026i004p00691
      Sivakumar, B., Halter, T., Zhang, H., 2005. A Fractal Investigation of Solute Travel Time in a Heterogeneous Aquifer: Transition Probability/Markov Chain Representation. Ecological Modelling, 182(3/4): 355-370. https://doi.org/10.1016/j.ecolmodel.2004.04.010
      Usman, M., Qamar, M. U., Becker R., et al., 2020. Numerical Modelling and Remote Sensing Based Approaches for Investigating Groundwater Dynamics under Changing Land-Use and Climate in the Agricultural Region of Pakistan. Journal of Hydrology, 581: 124408. https://doi.org/10.1016/j.jhydrol.2019.124408
      van Genuchten, M. T., 1980. A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 44(5): 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x
      Wang, J. Zhang, T. L., Zheng, H. L., 1999. Geological Disposal of Radioactive Waste in the World. Atomic Energy Press, Beijing(in Chinese).
      Wen, X. H., Capilla, J. E., Deutsch, C. V., et al., 1999. A Program to Create Permeability Fields That Honor Single-Phase Flow Rate and Pressure Data. Computers & Geosciences, 25(3): 217-230. https://doi.org/10.1016/S0098-3004(98)00126-5
      Xue, Y. Q., 1986. Principles of Groundwater Dynamics. Geological Publishing House, Beijing (in Chinese).
      Yang, J. Z., Cai, S. Y., Huang, G. H., et al., 2000. Stochastic Theory of Groundwater and Solute Transport in Porous Media. Science Press, Beijing, 21-48 (in Chinese).
      Yeh, T. C., Liu, S. Y., 2000. Hydraulic Tomography: Development of a New Aquifer Test Method. Water Resources Research, 36(8): 2095-2105. https://doi.org/10.1029/2000WR900114
      Zhang, H., Harter, T., Sivakumar, B., 2006. Nonpoint Source Solute Transport Normal to Aquifer Bedding in Heterogeneous, Markov Chain Random Fields. Water Resources Research, 42(6): W06403. https://doi.org /10.1029/2004WR003808
      Zhao, P., Liu, J., Chen, L., et al., 2017. Experimental Study on Gas Relative Permeability of Unsaturated Granite. Chinese Journal of Underground Space and Engineering, 13(1): 57-62, 70(in Chinese with English abstract).
      Zhou, H. Y., 2011. Parameter Identification of Non-Gaussian Aquifer Based on Ensemble Kalman Filter Method (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      顾慰祖, 庞忠和, 王全九, 等, 2011. 同位素水文学. 北京: 科学出版社, 432.
      郭永海, 王驹, 金远新, 2001. 世界高放废物地质处置库选址研究概况及国内进展. 地学前缘, 8(2): 327-332. doi: 10.3321/j.issn:1005-2321.2001.02.017
      霍思远, 靳孟贵, 2017. Van Genuchten模型参数对降水入渗数值模拟的敏感性. 地球科学, 42(3): 447-452. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXG201707008.htm
      蒋立群, 孙蓉琳, 梁杏. 2021. 含水层非均质性不同刻画方法对地下水流和溶质运移预测的影响. 地球科学, 46(11): 4150-4160. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202111027.htm
      李有光, 蓝俊康, 黎容伶, 等, 2016. 广西花山花岗岩体风化带的渗透系数. 桂林理工大学学报, 36(4): 681-687. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX201604006.htm
      王驹, 张铁岭, 郑华铃, 1999. 世界放射性废物地质处置. 北京: 原子能出版社.
      薛禹群, 1986. 地下水动力学原理. 北京: 地质出版社.
      杨金忠, 蔡树英, 黄冠华, 等, 2000. 多孔介质中水分及溶质运移的随机理论. 北京: 科学出版社, 21-48.
      赵鹏, 刘健, 陈亮, 等, 2017. 非饱和花岗岩气体相对渗透率试验研究. 地下空间与工程学报, 13(1): 57-62, 70. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201701009.htm
      中国地质调查局, 2012. 水文地质手册. 第2版. 北京: 地质出版社, 680-684.
      周海燕, 2011. 基于集合卡尔曼滤波法的非高斯含水层参数识别(博士学位论文). 北京:中国地质大学 .
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(19)  / Tables(3)

      Article views (699) PDF downloads(36) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return