• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 9
    Sep.  2022
    Turn off MathJax
    Article Contents
    Wang Jianwei, Bao Jun, Cao Jianjun, Zhao Leqiang, Zeng Zhiping, Gong Yajun, Li Shouji, Li Songtao, 2022. Two Types of Strike‐Slip Fault Zones and Their Tectonic Deformation Patterns in the Central Junggar Basin. Earth Science, 47(9): 3389-3400. doi: 10.3799/dqkx.2022.032
    Citation: Wang Jianwei, Bao Jun, Cao Jianjun, Zhao Leqiang, Zeng Zhiping, Gong Yajun, Li Shouji, Li Songtao, 2022. Two Types of Strike‐Slip Fault Zones and Their Tectonic Deformation Patterns in the Central Junggar Basin. Earth Science, 47(9): 3389-3400. doi: 10.3799/dqkx.2022.032

    Two Types of Strike‐Slip Fault Zones and Their Tectonic Deformation Patterns in the Central Junggar Basin

    doi: 10.3799/dqkx.2022.032
    • Received Date: 2022-01-20
    • Publish Date: 2022-09-25
    • The strike-slip fault zone plays an important role in controlling the formation and distribution of large and medium oil and gas fields in the compressional superimposed basins in western China, which is also one of the difficult problems in the study. Based on the high-density 3D seismic data, a fine strike-slip fault zone interpretation and deformation pattern analysis of the Jurassic in the central Junggar basin using a variety of structural analysis techniques are conducted in this study. During the second episode of Yanshan tectonic movement, two types of strike-slip fault zones of NWW left-lateral compression-torsion and NE left-lateral tension-torsion were developed in the Jurassic. They were both composed of four groups of shear faults, which followed the simple left-lateral shear mode, but they were very different in their geometric characteristics and structural attributes. There is no conjugate shear relationship between NWW and NE strike-slip fault zones, but arc-shaped joint and merge in the blunt angle zone (about 135°). In the tectonic deformation, the arc-shaped joint action of two types of left-lateral strike-slip faults controlled torsion deformation and shear fracture in the deformation area, forming a large scale clockwise torsional structural system. The deformation pattern of torsional structure can be used as a reference for the study of intracontinental orogenic belts, and also provides a new idea for oil and gas exploration in compression-torsional basins.

       

    • loading
    • Chen, F. J., Wang, X. W., Wang, X. W., 2005. Prototype and Tectonic Evolution of the Junggar Basin, Northwestern China. Earth Science Frontiers, 12(3): 77-89 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2005.03.010
      Chen, Y. B., Cheng, X. G., Zhang, H., et al., 2018. Fault Characteristics and Control on Hydrocarbon Accumulation of Middle‐Shallow Layers in the Slope Zone of Mahu Sag, Junggar Basin, NW China. Petroleum Exploration and Development, 45(6): 985-994 (in Chinese with English abstract).
      Cheng, C. L., 2018. Characteristics of Strike‐Slip Faults in No. 4 Blocks in Central Junggar Basin and Its Significance of Petroleum Geology. Journal of Shengli College China University of Petroleum, 32(1): 8-10 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-5935.2018.01.002
      Cloos, H., 1928. Experimente zur Inneren Tektonik. Zentralblatt für Mineralogie, Geologie and Paläontologie, (5): 609-621.
      Cui, S. Q., 1999. On Global Meso Cenozoic Intracontinental Orogenesis and Orogenic Belts. Earth Science Frontiers, 6(4): 283-293 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.1999.04.011
      Dong, S. W., Wu, X. H., Wu, Z. H., et al., 2000. On Tectonic Seesawing of the East Asia Continent‐Global Implication of the Yanshanian Movement. Geological Review, 46(1): 8-13 (in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.2000.01.002
      Ge, X. H., 1989. The History of Formation of Intraplate Orogenic Belts in the North China Paleoplate. Geological Review, 35(3): 254-261 (in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.1989.03.009
      He, D. F., Chen, X. F., Kuang, J., et al., 2008. Development and Genetic Mechanism of Chepaizi‐Mosuowan Uplift in Junggar Basin. Earth Science Frontiers, 15(4): 42-55 (in Chinese with English abstract). doi: 10.1016/S1872-5791(08)60038-X
      He, D. F., Zhang, L., Wu, S. T., 2018. Tectonic Evolution Stages and Features of the Junggar Basin. Oil & Gas Geology, 39(5): 845-861 (in Chinese with English abstract).
      Jia, Q. S., Yin, W., Chen, F. J., et al., 2007. The Role of Che‐Mo Palaeohigh in Controlling Hydrocarbon Accumulation in Central Juggar Basin. Oil & Gas Geology, 28(2): 257-265 (in Chinese with English abstract).
      Jiang, Y. J., Yang, B. Z., Wang, X. Y., et al., 2002. Structural Feature and Evolution in Northeast Part of Junggar Basin. Acta Geologica Sinica, 76(4): 462-468 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2002.04.005
      Johnson, A. M., 1977. Styles of Folding: Mechanics and Mechanisms of Folding of Natural Elastic Materials. Elservier, Amsterdam.
      Li, D. X., 1999. Intraplate Transpressional Orogenic Mechanism. Earth Science Frontiers, 6(4): 317-322 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.1999.04.014
      Lin, H. X., Wang, J. W., Cao, J. J., et al., 2019. Jurassic Compression‐Torsion Fault Patterns of the Central Junggar Basin and Their Controlling Role on Reservoir. Acta Geologica Sinica, 93(12): 3259-3268 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2019.12.017
      Liu, J. B., Li, P. J., Hu, Z., et al., 2014. Hydrocarbon Accumulation Mechanisms Controlled by Yanshanian Faults in Eastern Junggar Basin. Xinjiang Petroleum Geology, 35(1): 5-11 (in Chinese with English abstract).
      Liu, Y. H., Liu, X. W., Zheng, J. J., et al., 2011. Coupling Dynamic Mechanisms between Plate Tectonics Evolution and Mantle Convection of South and North Tianshan. Progress in Geophysics, 26(5): 1544-1556 (in Chinese with English abstract). doi: 10.3969/j.issn.1004-2903.2011.05.006
      Martin, H., 1983. Alternative Geodynamic Models for the Damara Orogeny. In: Martin, H., Eder, F. W., eds., Intracontinental Fold Belts. Springer‐Verlag, Berlin.
      Peng, X. L., 2007. Query of Chepaizi‐Mosuowan Paleo‐Uplift in Junggar Basin. China Petroleum Exploration, 12(6): 63-71, 77 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2007.06.014
      Price, N. J., Cosgrave, J. W., 1990. Analysis of Geological Structures. Cambridge University Press, Cambridge.
      Ridel, W., 1929. Zur Mechanic Geologischer Brucherscheinungen. Zentralblatt für Mineralogie, Geologie and Paläontologie, (8): 345-368.
      Shu, L. S., 2021. Principal Features of Intracontinental Orogenic Belt and Discussions on Its Dynamics. Acta Geologica Sinica, 95(1): 98-106 (in Chinese with English abstract).
      Song, H. L., 1999. Characteristics of Yanshan Type Intraplate Orogenic Belts and a Discussion on Its Dynamics. Earth Science Frontiers, 6(4): 309-316 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.1999.04.013
      Song, J. Y., Qin, M. K., Cai, Y. Q., et al., 2019. Uplift‐Denudation of Orogenic Belts Control on the Formation of Sandstone Type Uranium (U) Deposits in Eastern Junggar, Northwest China: Implications from Apatite Fission Track (AFT). Earth Science, 44(11): 3910-3925 (in Chinese with English abstract).
      Sui, F. G., 2015. Tectonic Evolution and Its Relationship with Hydrocarbon Accumulation in the Northwest Margin of Junggar Basin. Acta Geologica Sinica, 89(4): 779-793 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2015.04.010
      Tong, D. J., Ren, J. Y., Ren, Y. P., 2006. Evolution of the Che‐Mo Palaeo‐Uplift in Junggar Basin and Control on the Oil and Gas Reservoir. Petroleum Geology and Recovery Efficiency, 13(3): 39-42 (in Chinese with English abstract). doi: 10.3969/j.issn.1009-9603.2006.03.012
      Wang, T. F., 2019. A Review of Geotectonics. Earth Science, 44(5): 1526-1536 (in Chinese with English abstract).
      Weng, W. H., 1927. Crustal Movements and Igneous Activities in Eastern China since Mesozoic. Journal of the Geological Society of China, 6(1): 9-36 (in Chinese).
      Wu, Q. F., 1986. Structural Evolution and Prospects of Junggar Basin. Xinjiang Geology, 4(3): 1-19 (in Chinese with English abstract).
      Wu, X. Z., Zhang, N. F., Shi, X., et al., 2006. Characteristics and Reservoiring Mode of Chepaizi‐Mosuowan Paleo‐Uplift in Junggar Basin. China Petroleum Exploration, 11(1): 65-68, 84 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2006.01.010
      Xiao, W. J., Song, D. F., Brian, F. W., 2019. Accretionary Processes and Metallogenesis of the Central Asian Orogenic Belt: Advances and Perspectives. Science in China (Series D), 49(10): 1512-1545 (in Chinese).
      Yu, F. S., Amu, G., Yang, G. D., et al., 2008. Tectonic Evolution and Mechanism Analysis of Che‐Mo Palaeo‐Uplift in Junggar Basin. Acta Geoscientica Sinica, 29(1): 39-44 (in Chinese with English abstract).
      Zhang, C. H., 1999. A Primary Discussion on the Intraplate Orogenic Belt. Earth Science Frontiers, 6(4): 295-308 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.1999.04.012
      Zhao, W. X., 2001. Represented Character and Several Revelations about Yanshan Mode Intraplate Orogenesis Acting on the West‐Hill Beijing. Geological Science and Technology Information, 20(2): 23-26 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2001.02.005
      Zheng, Y. D., Wang, T., Ma, M. B., et al., 2004. Maximum Effective Moment Criterion and the Origin of Low‐Angle Normal Faults. Journal of Structural Geology, 26(2): 271-285. https://doi.org/10.1016/S0191-8141(03)00079-8
      Zhu, F., Qu, J. H., Yu, B. L., et al., 2017. Recognition of the Reservoir in Well Shinan‐21 of the Hinterland, Junggar Basin. Xinjiang Petroleum Geology, 38(6): 673-677 (in Chinese with English abstract).
      Zhu, W., Wang, R., Lu, X. C., et al., 2021. Yanshanian Tectonic Activities and Their Sedimentary Responses in Northwestern Junggar Basin. Earth Science, 46(5): 1692-1709 (in Chinese with English abstract).
      陈发景, 汪新文, 汪新伟, 2005. 准噶尔盆地的原型和构造演化. 地学前缘, 12(3): 77-89. doi: 10.3321/j.issn:1005-2321.2005.03.010
      陈永波, 程晓敢, 张寒, 等, 2018. 玛湖凹陷斜坡区中浅层断裂特征及其控藏作用. 石油勘探与开发, 45(6): 985-994. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201806007.htm
      程长领, 2018. 准噶尔盆地中部4区块走滑断裂特征及石油地质意义. 中国石油大学胜利学院学报, 32(1): 8-10. doi: 10.3969/j.issn.1673-5935.2018.01.002
      崔盛芹, 1999. 论全球性中‒新生代陆内造山作用与造山带. 地学前缘, 6(4): 283-293. doi: 10.3321/j.issn:1005-2321.1999.04.011
      董树文, 吴锡浩, 吴珍汉, 等, 2000. 论东亚大陆的构造翘变: 燕山运动的全球意义. 地质论评, 46(1): 8-13. doi: 10.3321/j.issn:0371-5736.2000.01.002
      葛肖虹, 1989. 华北板内造山带的形成史. 地质论评, 35(3): 254-261. doi: 10.3321/j.issn:0371-5736.1989.03.009
      何登发, 陈新发, 况军, 等, 2008. 准噶尔盆地车排子‒莫索湾古隆起的形成演化与成因机制. 地学前缘, 15(4): 42-55. doi: 10.3321/j.issn:1005-2321.2008.04.006
      何登发, 张磊, 吴松涛, 等, 2018. 准噶尔盆地构造演化阶段及其特征. 石油与天然气地质, 39(5): 845-861. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805002.htm
      贾庆素, 尹伟, 陈发景, 等, 2007. 准噶尔盆地中部车‒莫古隆起控藏作用分析. 石油与天然气地质, 28(2): 257-265. doi: 10.3321/j.issn:0253-9985.2007.02.018
      姜耀俭, 杨丙中, 王岫岩, 等, 2002. 准噶尔盆地东北缘构造特征、演化及与油气的关系. 地质学报, 76(4): 462-468. doi: 10.3321/j.issn:0001-5717.2002.04.005
      李东旭, 1999. 板内扭压造山机制. 地学前缘, 6(4): 317-322. doi: 10.3321/j.issn:1005-2321.1999.04.014
      林会喜, 王建伟, 曹建军, 等, 2019. 准噶尔盆地中部地区侏罗系压扭断裂体系样式及其控藏作用研究. 地质学报, 93(12): 3259-3268. doi: 10.3969/j.issn.0001-5717.2019.12.017
      刘俊榜, 李培俊, 胡智, 等, 2014. 准噶尔盆地东部地区燕山运动期断裂控藏机制. 新疆石油地质, 35(1): 5-11. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201401003.htm
      刘玉虎, 刘兴旺, 郑建京, 等, 2011. 天山南北地块构造演化与地幔对流耦合动力机制. 地球物理学进展, 26(5): 1544-1556. doi: 10.3969/j.issn.1004-2903.2011.05.006
      彭希龄, 2007. 准噶尔盆地车莫古隆起质疑. 中国石油勘探, 12(6): 63-71, 77. doi: 10.3969/j.issn.1672-7703.2007.06.014
      舒良树, 2021. 陆内造山带特征及其动力学讨论. 地质学报, 95(1): 98-106. doi: 10.3969/j.issn.1006-0995.2021.01.020
      宋鸿林, 1999. 燕山式板内造山带基本特征与动力学探讨. 地学前缘, 6(4): 309-316. doi: 10.3321/j.issn:1005-2321.1999.04.013
      宋继叶, 秦明宽, 蔡煜琦, 等, 2019. 准东构造隆升对砂岩型铀成矿作用的制约: 磷灰石裂变径迹证据. 地球科学, 44(11): 3910-3925. doi: 10.3799/dqkx.2018.331
      隋风贵, 2015. 准噶尔盆地西北缘构造演化及其与油气成藏的关系. 地质学报, 89(4): 779-793. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201504010.htm
      佟殿君, 任建业, 任亚平, 2006. 准噶尔盆地车莫古隆起的演化及其对油气藏的控制. 油气地质与采收率, 13(3): 39-42. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS200603011.htm
      万天丰, 2019. 论大地构造学的发展. 地球科学, 44(5): 1526-1536. doi: 10.3799/dqkx.2019.033
      翁文灏, 1927. 中国东部自中生代以来的地壳运动及火山活动. 中国地质学会志, 6(1): 9-36. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE192701001.htm
      吴庆福, 1986. 准噶尔盆地构造演化与找油领域. 新疆地质, 4(3): 1-19. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI198603001.htm
      吴晓智, 张年富, 石昕, 等, 2006. 准噶尔盆地车莫古隆起构造特征与成藏模式. 中国石油勘探, 11(1): 65-68, 84. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY200601009.htm
      肖文交, 宋东方, Brian, F. W., 等, 2019. 中亚增生造山过程与成矿作用研究进展. 中国科学(D辑), 49(10): 1512-1545. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201910003.htm
      于福生, 阿木古冷, 杨光达, 等, 2008. 准噶尔盆地车‒莫古隆起的构造演化特征及其成因模拟. 地球学报, 29(1): 39-44. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200801007.htm
      张长厚, 1999. 初论板内造山带. 地学前缘, 6(4): 295-308. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY199904018.htm
      赵温霞, 2001. 燕山式板内造山作用在北京西山的表现特征及若干启示. 地质科技情报, 20(2): 23-26. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200102004.htm
      朱峰, 瞿建华, 于宝利, 等, 2017. 准噶尔盆地腹部石南21井油藏再认识. 新疆石油地质, 38(6): 673-677. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201706008.htm
      朱文, 王任, 鲁新川, 等, 2021. 准噶尔盆地西北腹部燕山期构造活动与沉积响应. 地球科学, 46(5): 1692-1709. doi: 10.3799/dqkx.2020.118
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)

      Article views (1251) PDF downloads(133) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return