Citation: | Hu Yufeng, Wang Ji, Li Zhenhong, Peng Jianbing, 2022. Land Surface Soil Moisture along Sichuan-Tibet Traffic Corridor Retrieved by Spaceborne Global Navigation Satellite System Reflectometry. Earth Science, 47(6): 2058-2068. doi: 10.3799/dqkx.2022.050 |
Al-Khaldi, M. M., Johnson, J. T., 2022. Soil Moisture Retrievals Using CYGNSS Data in a Time-Series Ratio Method: Progress Update and Error Analysis. IEEE Geoscience and Remote Sensing Letters, 19: 1-5. https://doi.org/10.1109/lgrs.2021.3086092
|
Camps, A., Park, H., Pablos, M., et al., 2016. Sensitivity of GNSS-R Spaceborne Observations to Soil Moisture and Vegetation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(10): 4730-4742. https://doi.org/10.1109/jstars.2016.2588467
|
Carreno-Luengo, H., Luzi, G., Crosetto, M., 2019. Sensitivity of CyGNSS Bistatic Reflectivity and SMAP Microwave Radiometry Brightness Temperature to Geophysical Parameters over Land Surfaces. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(1): 107-122. https://doi.org/10.1109/jstars.2018.2856588
|
Chai, B., Tao, Y. Y., Du, J., et al., 2020. Hazard Assessment of Debris Flow Triggered by Outburst of Jialong Glacial Lake in Nyalam County, Tibet. Earth Science, 45(12): 4630-4639(in Chinese with English abstract).
|
Chan, S. K., Bindlish, R., O'Neill, P. E., et al., 2016. Assessment of the SMAP Passive Soil Moisture Product. IEEE Transactions on Geoscience and Remote Sensing, 54(8): 4994-5007. https://doi.org/10.1109/TGRS.2016.2561938.
|
Chen, H. Y., Wu, J., Li, C. B., et al., 2020. Application Evaluation of Satellite Soil Moisture Products in Qinghai-Tibet Plateau. Acta Ecologic Sinica, 40(24): 9195-9207(in Chinese with English abstract).
|
Chen, R., Yang, X. M., Wan, G. N., et al., 2020. Soil Freezing-Thawing Processes on the Tibetan Plateau: A Review Based on Hydrothermal Dynamics. Progress in Geography, 39(11): 1944-1958(in Chinese with English abstract). doi: 10.18306/dlkxjz.2020.11.014
|
Chen, Y., Yang, K., Qin, J., et al., 2013. Evaluation of AMSR-E Retrievals and GLDAS Simulations against Observations of a Soil Moisture Network on the Central Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 118(10): 4466-4475. https://doi.org/10.1002/jgrd.50301
|
Chen, Y., Yang, K., Qin, J., et al., 2017. Evaluation of SMAP, SMOS, and AMSR2 Soil Moisture Retrievals against Observations from Two Networks on the Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 122: 5780-5792. doi: 10.1002/2016jd026388
|
Chew, C. C., Shah, R., Zuffada, C., et al., 2016. Demonstrating Soil Moisture Remote Sensing with Observations from the UK TechDemoSat-1 Satellite Mission. Geophysical Research Letters, 43(7): 3317-3324. https://doi.org/10.1002/2016gl068189
|
Chew, C. C., Small, E. E., 2018. Soil Moisture Sensing Using Spaceborne GNSS Reflections: Comparison of CYGNSS Reflectivity to SMAP Soil Moisture. Geophysical Research Letters, 45(9): 4049-4057. https://doi.org/10.1029/2018gl077905
|
Chew, C., Small, E., 2020a. Description of the UCAR/CU Soil Moisture Product. Remote Sensing, 12(10): 1558. https://doi.org/10.3390/rs12101558
|
Chew, C., Small, E., 2020b. Estimating Inundation Extent Using CYGNSS Data: A Conceptual Modeling Study. Remote Sensing of Environment, 246: 111869. https://doi.org/10.1016/j.rse.2020.111869
|
Clarizia, M. P., Pierdicca, N., Costantini, F., et al., 2019. Analysis of CYGNSS Data for Soil Moisture Retrieval. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(7): 2227-2235. https://doi.org/10.1109/jstars.2019.2895510.
|
Dente, L., Su, Z. B., Wen, J., 2012. Validation of SMOS Soil Moisture Products over the Maqu and Twente Regions. Sensors (Basel, Switzerland), 12(8): 9965-9986. https://doi.org/10.3390/s120809965
|
Fan, K. K., Zhang, Q., Sun, P., et al., 2019. Variation, Causes and Future Estimation of Surface Soil Moisture on the Tibetan Plateau. Acta Geographica Sinica, 74(3): 520-533(in Chinese with English abstract).
|
Foti, G., Gommenginger, C., Jales, P., et al., 2015. Spaceborne GNSS Reflectometry for Ocean Winds: First Results from the UK TechDemoSat-1 Mission. Geophysical Research Letters, 42(13): 5435-5441. https://doi.org/10.1002/2015gl064204.
|
Jackson, T. J., Cosh, M. H., Bindlish, R., et al., 2010. Validation of Advanced Microwave Scanning Radiometer Soil Moisture Products. IEEE Transactions on Geoscience and Remote Sensing, 48(12): 4256-4272. https://doi.org/10.1109/tgrs.2010.2051035
|
Jing, C. L., 2020. Comparative Evaluation of SMAP & CCI & CLDAS Soil Moisture Products in Typical Region of Qinghai-Tibet Plateau. Journal of Subtropical Resources and Environment, 15(1): 85-94(in Chinese with English abstract).
|
Kerr, Y. H., Waldteufel, P., Wigneron, J. P., et al., 2001. Soil Moisture Retrieval from Space: The Soil Moisture and Ocean Salinity (SMOS) Mission. IEEE Transactions on Geoscience and Remote Sensing, 39(8): 1729-1735. https://doi.org/10.1109/36.942551
|
Li, J. R., Niu, Z. G., Feng, L., et al., 2020. Simulation and Prediction of Extreme Temperature Indices in Yangtze and Yellow River Basins by CMIP5 Models. Earth Science, 45(6): 1887-1904(in Chinese with English abstract).
|
Liu, J., Chai, L. N., Lu, Z., et al., 2019. Evaluation of SMAP, SMOS-IC, FY3B, JAXA, and LPRM Soil Moisture Products over the Qinghai-Tibet Plateau and Its Surrounding Areas. Remote Sensing, 11(7): 792. https://doi.org/10.3390/rs11070792
|
Liu, Q., Du, J. Y., Shi, J. C., et al., 2013. Analysis of Spatial Distribution and Multi-Year Trend of the Remotely Sensed Soil Moisture on the Tibetan Plateau. Science China: Earth Sciences, 43(10): 1677-1690(in Chinese).
|
Mladenova, I. E., Jackson, T. J., Bindlish, R., et al., 2013. Incidence Angle Normalization of Radar Backscatter Data. IEEE Transactions on Geoscience and Remote Sensing, 51(3): 1791-1804. https://doi.org/10.1109/tgrs.2012.2205264.
|
Peng, J. B., Cui, P., Zhuang, J. Q., 2020. Challenges to Engineering Geology of Sichuan-Tibet Railway. Chinese Journal of Rock Mechanics and Engineering, 39(12): 2377-2389(in Chinese with English abstract).
|
Ruf, C. S., Atlas, R., Chang, P. S., et al., 2016. New Ocean Winds Satellite Mission to Probe Hurricanes and Tropical Convection. Bulletin of the American Meteorological Society, 97(3): 385-395. https://doi.org/10.1175/bams-d-14-00218.1
|
Su, Z., Wen, J., Dente, L., et al., 2011. The Tibetan Plateau Observatory of Plateau Scale Soil Moisture and Soil Temperature (Tibet-Obs) for Quantifying Uncertainties in Coarse Resolution Satellite and Model Products. Hydrology and Earth System Sciences, 15(7): 2303-2316. https://doi.org/10.5194/hess-15-2303-2011
|
Yang, C. Y., Wang, S. X., Yang, C. Y., et al., 2021. Spatial-Temporal Variation Characteristics of Vegetation Coverage along Sichuan-Tibet Railway. Journal of Arid Land Resources and Environment, 35(3): 174-182(in Chinese with English abstract).
|
Yang, K., Qin, J., Zhao, L., et al., 2013. A Multiscale Soil Moisture and Freeze-Thaw Monitoring Network on the Third Pole. Bulletin of the American Meteorological Society, 94(12): 1907-1916. doi: 10.1175/bams-d-12-00203.1
|
Yao, P., Lu, H., Shi, J., et al., 2021. A Long Term Global Daily Soil Moisture Dataset Derived from AMSR-E and AMSR2 (2002—2019). Scientific Data, 8(1). https://doi.org/10.1038/s41597-021-00925-8
|
Zeng, J. Y., Li, Z., Chen, Q., et al., 2015. Evaluation of Remotely Sensed and Reanalysis Soil Moisture Products over the Tibetan Plateau Using In-Situ Observations. Remote Sensing of Environment, 163: 91-110. https://doi.org/10.1016/j.rse.2015.03.008.
|
Zhang, P., Zheng, D., Wen, J., et al., 2021. A 10-Year Surface Soil Moisture Dataset Produced Based on In Situ Measurements Collected from the Tibet-Obs (2009—2019). National Tibetan Plateau Data Center, doi: 10.4121/12763700.v7
|
Zheng, D. H., Wang, X., van der Velde, R., et al., 2018. Impact of Surface Roughness, Vegetation Opacity and Soil Permittivity on L-Band Microwave Emission and Soil Moisture Retrieval in the Third Pole Environment. Remote Sensing of Environment, 209: 633-647. https://doi.org/10.1016/j.rse.2018.03.011.
|
柴波, 陶阳阳, 杜娟, 等, 2020. 西藏聂拉木县嘉龙湖冰湖溃决型泥石流危险性评价. 地球科学, 45(12): 4630-4639. doi: 10.3799/dqkx.2020.294
|
陈泓羽, 吴静, 李纯斌, 等, 2020. 卫星土壤水分产品在青藏高原地区的适用性评价. 生态学报, 40(24): 9195-9207. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202024033.htm
|
陈瑞, 杨梅学, 万国宁, 等, 2020. 基于水热变化的青藏高原土壤冻融过程研究进展. 地理科学进展, 39(11): 1944-1958. doi: 10.18306/dlkxjz.2020.11.014
|
范科科, 张强, 孙鹏, 等, 2019. 青藏高原地表土壤水变化、影响因子及未来预估. 地理学报, 74(3): 520-533. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201903010.htm
|
荆琛琳, 2020. SMAP、CCI和CLDAS土壤湿度产品在青藏高原典型区域的比较验证. 亚热带资源与环境学报, 15(1): 85-94. doi: 10.3969/j.issn.1673-7105.2020.01.012
|
李佳瑞, 牛自耕, 冯岚, 等, 2020. CMIP5模式对长江和黄河流域极端气温指标的模拟与预估. 地球科学, 45(6): 1887-1904. doi: 10.3799/dqkx.2020.116
|
刘强, 杜今阳, 施建成, 等, 2013. 青藏高原表层土壤湿度遥感反演及其空间分布和多年变化趋势分析. 中国科学: 地球科学, 43(10): 1677-1690. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201310012.htm
|
彭建兵, 崔鹏, 庄建琦, 2020. 川藏交通廊道对工程地质提出的挑战. 岩石力学与工程学报, 39(12): 2377-2389.
|
杨彩云, 王世曦, 杨春艳, 等, 2021. 川藏交通廊道沿线植被覆盖度时空变化特征分析. 干旱区资源与环境, 35(3): 174-182.
|