• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 8
    Sep.  2022
    Turn off MathJax
    Article Contents
    Liu Hanliang, Nie Lanshi, Shojin Davaa, Wang Xueqiu, Chi Qinghua, Wang Lijun, 2022. Regional Geochemical Distribution and Controlling Factors of Lithium in the Sino⁃Mongolia Border Areas. Earth Science, 47(8): 2795-2808. doi: 10.3799/dqkx.2022.054
    Citation: Liu Hanliang, Nie Lanshi, Shojin Davaa, Wang Xueqiu, Chi Qinghua, Wang Lijun, 2022. Regional Geochemical Distribution and Controlling Factors of Lithium in the Sino⁃Mongolia Border Areas. Earth Science, 47(8): 2795-2808. doi: 10.3799/dqkx.2022.054

    Regional Geochemical Distribution and Controlling Factors of Lithium in the Sino⁃Mongolia Border Areas

    doi: 10.3799/dqkx.2022.054
    • Received Date: 2021-11-10
    • Publish Date: 2022-09-25
    • The Sino⁃Mongolia border areas are advantage in ore⁃forming geological conditions and have huge resource potentials, which make them the hotspot for international and domestic geoscience research and exploration. Lithium energy has been recognized as the developing trend of future new energy, and lithium ore has become a hotspot in the investigation and research of strategic mineral resources.With the ever⁃increasing demand for lithium, understanding its concentration and distribution in thepedosphere is essential for alleviating the lithium shortage in China.Based on the 1︰1 million geochemical mapping data of the Sino⁃Mongolia border areas, this paper discusses the geochemical parameters, regional geochemical distribution and influencing factors of lithium in the catchment sediments. The median and average values of lithium in the catchment sediments are 22.50×10-6 and 24.46×10-6, respectively. The Altay tectonic belt and the arc basin system at the Altay southern margin have the highest lithium contents, with the regional concentration coefficients of 1.38 and 1.26, respectively, which are the preponderant regions of lithium enrichment. The regional geochemical distribution of lithium is mainly controlled by the geological background, while the geographical landscape, clay content, and mineral deposit distribution can also restrict the distribution patterns of lithium. Based on the 85% cumulative frequency, 74 lithium geochemical anomalies are delineated, of which 23 lithium geochemical anomalies reach the scale of geochemical province. These anomalies provide the important selection areas for exploring lithium and other rare metal deposits in this area. The paper fills the gap in the lithium geochemical distribution study and provides important data for the comparison of rare metal deposits in the Sino⁃Mongolia border areas, and delineates prospecting targets for alleviating the Li shortage in China.

       

    • loading
    • Anderson, M. A., Bertsch, P. M., Miller, W. P., 1988. The Distribution of Lithium in Selected Soils and Surface Waters of the Southeastern U. S. A. . Applied Geochemistry, 3(2): 205-212. https://doi.org/10.1016/0883⁃2927(88)90008⁃x
      Bradley, D. C., 2011. Secular Trends in the Geologic Record and the Supercontinent Cycle. EarthScience Reviews, 108(1/2): 16-33. https://doi.org/10.1016/j.earscirev.2011.05.003
      Bu, J. J., He, W. H., Zhang, K. X., et al., 2020. Evolution of the Paleo⁃Asian Ocean: Evidences from Paleontology and Stratigraphy. Earth Science, 45(3): 711-727 (in Chinese with English abstract).
      Carranza, E. J. M., 2010. Catchment Basin Modelling of Stream Sediment Anomalies Revisited: Incorporation of EDA and Fractal Analysis. Geochemistry: Exploration, Environment, Analysis, 10(4): 365-381. https://doi.org/10.1144/1467⁃7873/09⁃224
      Chen, C., Lee, C. T. A., Tang, M., et al., 2020. Lithium Systematics in Global Arc Magmas and the Importance of Crustal Thickening for Lithium Enrichment. Nature Communications, 11(1): 5313. https://doi.org/10.1038/s41467⁃020⁃19106⁃z
      Doe, B. R., 1991. Source Rocks and the Genesis of Metallic Mineral Deposits. Global Tectonics and Metallogeny, 4(1/2): 13-20. https://doi.org/10.1127/gtm/4/1991/13
      Kashin, V. K., 2019. Lithium in Soils and Plants of Western Transbaikalia. Eurasian Soil Science, 52(4): 359-369. https://doi.org/10.1134/s1064229319040094
      Kempe, U., Möckel, R., Graupner, T., et al., 2015. The Genesis of Zr⁃Nb⁃REE Mineralisation at Khalzan Buregte (Western Mongolia) Reconsidered. Ore Geology Reviews, 64: 602-625. https://doi.org/10.1016/j.oregeorev.2014.05.003
      Keller, G., 2008. Cretaceous Climate, Volcanism, Impacts, and Biotic Effects. Cretaceous Research, 29(5/6): 754-771. https://doi.org/10.1016/j.cretres.2008.05.030
      Kesler, S. E., Gruber, P. W., Medina, P. A., et al., 2012. Global Lithium Resources: Relative Importance of Pegmatite, Brine and other Deposits. Ore Geology Reviews, 48(B10): 55-69. https://doi.org/10.1016/j.oregeorev.2012.05.006
      Li, J. J., Tang, W. L., Fu, C., et al., 2016. The Division of Metallogenic Belts in Sino⁃Mongolian Border Area. Geological Bulletin of China, 35(4): 461-487 (in Chinese with English abstract).
      Li, J. J., Zhang, F., Ren J. P., et al., 2015. Tectonic Units in China⁃Mongolia Border Area and Their Fundamental Characteristics. Geological Bulletin of China, 34(4): 636-662 (in Chinese with English abstract).
      Li, J. J., Orolmaa., D., 2021. Geological Map of the China⁃Mongolian Boundary Areas. : Geological Publishing House, Beijing (in Chinese).
      Li, J. K., Zou, T. R., Liu, X. F., et al., 2015. The Metallogenetic Regularities of Lithium Deposits in China. Acta Geologica SinicaEnglish Edition, 89(2): 652-670. https://doi.org/10.1111/1755⁃6724.12453
      Liu, H. L., Nie, L. S., Wang, X. Q., et al., 2018. Regional Geochemistry of Lithium in the Altay Area across the Boundary of China and Mongolia. Geoscience, 32(3): 493-499 (in Chinese with English abstract).
      Liu, H. L., Nie, L. S., Shojin, D., et al., 2020. Background Values of 69 Elements in Catchment Sediments of the China: Mongolia Boundary Region. Earth Science Frontiers, 27(3): 202-221 (in Chinese with English abstract).
      Liu, H. L., Wang, X. Q., Zhang, B. M., et al., 2020. Concentration and Distribution of Lithium in Catchment Sediments of China: Conclusions from the China Geochemical Baselines Project. Journal of Geochemical Exploration, 215(4): 106540. https://doi.org/10.1016/j.gexplo.2020.106540
      Liu, Y. J., Cao, L. M., Li, Z. L., et al., 1984. Geochemistry of Elements. Science Press, Beijing (in Chinese).
      Mao, J. W., Yang, Z. X., Xie, G. Q., et al., 2019. Critical Minerals: International Trends and Thinking. Mineral Deposits, 38(4): 689-698 (in Chinese with English abstract).
      Ma, Z., Li, J. W., 2018. Analysis of China's Lithium Resources Supply System: Status, Issues and Suggestions. China Mining Magazine, 27(10): 1-7 (in Chinese with English abstract).
      Munk, L., Hynek, S., Bradley, D., et al., 2016. Rare Earth and Critical Elements in Ore Deposits. In: Philip, L. V., Murray, W. H., Lithium, B., eds., A Global Perspective. Society of Economic Geologists, 18: 339-365.
      Nie, F. J., Jiang, S. H., Bai, D. M., et al., 2010. Types and Temporal⁃Spatial Distribution of Metallic Deposits in Southern Mongolia and Its Neighboring Areas. Acta Geoscientica Sinica, 31(3): 267-288 (in Chinese with English abstract).
      Reimann, C., de Caritat, P., 2012. New Soil Composition Data for Europe and Australia: Demonstrating Comparability, Identifying Continental⁃Scale Processes and Learning Lessons for Global Geochemical Mapping. Science of The Total Environment, 416(12): 239-252. https://doi.org/10.1016/j.scitotenv.2011.11.019
      Rudnick, R. L., Gao, S., 2003. The Composition of the Continental Crust. In: Holland, H. D., Condie, K., eds., Treatise on Geochemistry. Elsevier Pergamom, Amsterdam, 1-64.
      Taylor, S. R., McLenan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, London, 312.
      Tian, M., Wang, X. Q., Nie, L. S., et al., 2018. Recognition of Geochemical Anomalies Based on Geographically Weighted Regression: A Case Study Across the Boundary Areas of China and Mongolia. Journal of Geochemical Exploration, 190(4): 381-389. https://doi.org/10.1016/j.gexplo.2018.04.003
      Tomurtogoo, O., 2006. Tectonic Framework of Mongolia. In: Tomurhuu, D., Natal'in, B., Ya, A., eds., 2006. Structural and Tectonic Correlation across the Central Asian Orogenic Collage: Implications for Continental Growth and Intracontinental Deformation. Mongolian University of Science and Tectonology Press, Ulaanbaatar, 18-20.
      Wang, D. H., 2019. Study on Critical Mineral Resources: Significance of Research, Determination of Types, Attributes of Resources, Progress of Prospecting, Problems of Utilization, and Direction of Exploitation. Acta Geologica Sinica, 93(6): 1189-1209 (in Chinese with English abstract).
      Wang, H. Z., He, G. Q., Zhang, S. H., 2006. The Geology of China and Mongolia. Earth Science Frontiers, 13(6): 1-13 (in Chinese with English abstract).
      Wang, T., Huang, H., Song, P., et al., 2020. Studies of Crustal Growth and Deep Lithospheric Architecture and New Issues: Exemplified by the Central Asian Orogenic Belt (Northern Xinjiang). Earth Science, 45(7): 2326-2344 (in Chinese with English abstract).
      Wang, X. Q., Chi, Q. H., Liu, H. Y., et al., 2007. Wide⁃Spaced Sampling for Delineation of Geochemical Provinces in Desert Terrains, Northwestern China. Geochemistry: Exploration, Environment, Analysis, 7(2): 153-161. https://doi.org/10.1144/1467⁃7873/07⁃124
      Wang, X. Q., Liu, H. L., Wang, W., et al., 2020. Geochemical Abundance and Spatial Distribution of Lithium in China: Implications for Potential Prospects. Acta Geoscientica Sinica, 41(6): 797-806 (in Chinese with English abstract).
      Wang, X. Q., Shen, W. J., Zhang, B. M., et al., 2007. Relationship of Geochemical Blocks and Ore Districts: Examples from Eastern Tianshan Metallogenic Belt, Xinjiang, China. Earth Science Frontiers, 14(5): 116-123 (in Chinese with English abstract). doi: 10.1016/S1872-5791(07)60040-2
      Wang, X. Q., Xu, S. F., Chi, Q. H., et al., 2013. Gold Geochemical Provinces in China: A Micro⁃ and Nano⁃Scale Formation Mechanism. Acta Geologica Sinca, 87(1), 1-8 (in Chinese with English abstract). doi: 10.1111/1755-6724.12026
      Wedepohl, K. H., 1995. The Composition of the Continental Crust. Mineralogical Magazine, 58A(2): 959-960. https://doi.org/10.1180/minmag.1994.58a.2.234
      Wen, H. J., Luo, C. G., Du, S. J., et al., 2020. Carbonate⁃Hosted Clay⁃Type Lithium Deposit and Its Prospecting Significance. Chinese Science Bulletin, 65(1): 53-59 (in Chinese with English abstract). doi: 10.1360/TB-2019-0179
      Xie, X. J, Cheng, Z. Z., Zhang, L. S., 2008. Geochemical Atlas of Southern China. Geological Publishing House, Beijing (in Chinese).
      Xie, X. J., Liu, D. W., Xiang, Y. C., et al., 2002. Geochemical Blocks: Development of Concept and Methodology. Geology in China, 29(3): 225-233 (in Chinese with English abstract).
      Xu, Y. F., Wang, X. F., Hu, C. Y., et al., 2018. Prospecting Potential of Rare Metal and 1: 50 000 Stream Sediment Geochemical Characteristics in Jiajika Area in Sichuan Province. Metal Mine, 47(2): 121-130 (in Chinese with English abstract).
      Xu, Z. Q., Wang, R. C., Zhao, Z. B., et al., 2018. On the Structural Backgrounds of the Large⁃Scale "Hard⁃Rock Type" Lithium Ore Belts in China. Acta Geologica Sinica, 92(6): 1091-1106 (in Chinese with English abstract).
      Xu, Z. Q., Fu, X. F., Zhao, Z. B., et al., 2019. Discussion on Relationships of Gneiss Dome and Metallogenic Regularity of Pegmatite⁃Type Lithium Deposits. Earth Science, 2019, 44(5): 1452-1463 (in Chinese with English abstract).
      Xue, Y. Y., Liu, H. Y., Sun, W. D., 2021. The Geochemical Properties and Enrichment Mechanism of Lithium. Geotectonica et Metallogenia, 45(6): 1202-1215 (in Chinese with English abstract).
      Yan, M. C., Chi, Q. H., 2005. The Chemical Composition of the Continental Crust and Rocks in the Eastern Part of China. Science Press, Beijing, 171 (in Chinese).
      Zhai, M. G., Wu, F. Y., Hu, R., Z., et al., 2019. Critical Metal Mineral Resources: Current Research Status and Scientific Issues. Bulletin of National Natural Science Foundation of China, (2): 106-111 (in Chinese with English abstract).
      Zhang, Q., Bai, J. F., Wang, Y., 2012. Analytical Scheme and Quality Monitoring System for China Geochemical Baselines. Earth Science Frontiers, 19(3): 33-42 (in Chinese with English abstract).
      Zou, T. R., Li, Q. C., 2006. Rare and Rare Earth Metallic Deposits in Xinjiang, China. Geological Publishing House, Beijing (in Chinese).
      卜建军, 何卫红, 张克信, 等, 2020. 古亚洲洋的演化: 来自古生物地层学方面的证据. 地球科学, 45(3): 711-727. doi: 10.3799/dqkx.2019.068
      李俊建, 唐文龙, 付超, 等, 2016. 中蒙边界地区成矿区带划分. 地质通报, 35(4): 461-487. doi: 10.3969/j.issn.1671-2552.2016.04.001
      李俊建, 张锋, 任军平, 等, 2015. 中蒙边界地区构造单元划分. 地质通报, 34(4): 636-662. doi: 10.3969/j.issn.1671-2552.2015.04.006
      李俊建, Orolmaa, D., 2021. 中蒙边界地区地质图. 北京: 地质出版社.
      刘汉粮, 聂兰仕, 王学求, 等, 2018. 中蒙跨境阿尔泰构造带稀有元素锂区域地球化学分布. 现代地质, 32(3): 493-499. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201803007.htm
      刘汉粮, 聂兰仕, Davaa, Shojin, 等, 2020. 中蒙边界地区汇水域沉积物69种元素的背景值. 地学前缘, 27(3): 202-221. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202003020.htm
      刘英俊, 曹励明, 李兆麟, 等, 1984. 元素地球化学. 北京: 科学出版社.
      毛景文, 杨宗喜, 谢桂青, 等, 2019. 关键矿产——国际动向与思考. 矿床地质, 38(4): 689-698. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201904001.htm
      马哲, 李建武, 2018. 中国锂资源供应体系研究: 现状、问题与建议. 中国矿业, 27(10): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201810001.htm
      聂凤军, 江思宏, 白大明, 等, 2010. 蒙古国南部及邻区金属矿床类型及其时空分布特征. 地球学报, 31(3): 267-288. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201003004.htm
      王登红, 2019. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向. 地质学报, 93(6): 1189-1209. doi: 10.3969/j.issn.0001-5717.2019.06.003
      王鸿祯, 何国琦, 张世红, 2006. 中国与蒙古之地质. 地学前缘, 13(6): 1-13. doi: 10.3321/j.issn:1005-2321.2006.06.003
      王涛, 黄河, 宋鹏, 等, 2020. 地壳生长及深部物质架构研究与问题: 以中亚造山带(北疆地区)为例. 地球科学, 45(7): 2326-2344. doi: 10.3799/dqkx.2020.172
      王学求, 刘汉粮, 王玮, 等, 2020. 中国锂矿地球化学背景与空间分布: 远景区预测. 地球学报, 41(6): 797-806. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202006006.htm
      王学求, 申武军, 张必敏, 等, 2007. 地球化学块体与大型矿集区的关系—以东天山为例. 地学前缘, 14(5): 116-123. doi: 10.3321/j.issn:1005-2321.2007.05.012
      王学求, 徐善法, 迟清华, 等, 2013. 中国金的地球化学省及其成因的微观解释. 地质学报, 87(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201301001.htm
      温汉捷, 罗重光, 杜胜江, 等, 2020. 碳酸盐黏土型锂资源的发现及意义. 科学通报, 65(1): 53-59. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202001009.htm
      谢学锦, 程志中, 张立生, 2008. 中国西南地区76种元素地球化学图集. 北京: 地质出版社.
      谢学锦, 刘大文, 向运川, 等, 2002. 地球化学块体——概念和方法学的发展. 中国地质, 29(3): 225-233. doi: 10.3969/j.issn.1000-3657.2002.03.001
      徐云峰, 王显峰, 胡朝云, 等, 2018. 四川甲基卡地区1∶5万水系沉积物地球化学特征及稀有金属找矿远景. 金属矿山, 47(2): 121-130. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201802024.htm
      许志琴, 王汝成, 赵中宝, 等, 2018. 试论中国大陆"硬岩型"大型锂矿带的构造背景. 地质学报, 92(6): 1091-1106. doi: 10.3969/j.issn.0001-5717.2018.06.001
      许志琴, 付小芳, 赵中宝, 等, 2019. 片麻岩穹窿与伟晶岩型锂矿的成矿规律探讨. 地球科学, 44(5): 1452-1463. doi: 10.3799/dqkx.2019.042
      薛颖瑜, 刘海洋, 孙卫东, 2021. 锂的地球化学性质与富集机理. 大地构造与成矿学, 45(6): 1202-1215. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202106009.htm
      翟明国, 吴福元, 胡瑞忠, 等, 2019. 战略性关键金属矿产资源: 现状与问题. 中国科学基金, (2): 106-111. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJJ201902002.htm
      张勤, 白金峰, 王烨, 2012. 地壳全元素配套分析方案及分析质量监控系统. 地学前缘, 19(3): 33-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201203004.htm
      邹天人, 李庆昌, 2006. 中国新疆稀有及稀土金属矿床. 北京: 地质出版社.
    • dqkxzx-47-8-2795-附表.docx
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)  / Tables(4)

      Article views (923) PDF downloads(154) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return