• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 6
    Jun.  2024
    Turn off MathJax
    Article Contents
    Cheng Shunbo, Wang Xiaodi, Cui Sen, Zhao Wuqiang, Yang Wenqiang, Liu Hao, Liu Junhao, Xu Ming, 2024. Zircon U-Pb Chronology, Geochemistry, and Their Tectonic Setting of Granitic Rocks from Northern Daocheng Batholith in West Sichuan. Earth Science, 49(6): 1966-1982. doi: 10.3799/dqkx.2022.057
    Citation: Cheng Shunbo, Wang Xiaodi, Cui Sen, Zhao Wuqiang, Yang Wenqiang, Liu Hao, Liu Junhao, Xu Ming, 2024. Zircon U-Pb Chronology, Geochemistry, and Their Tectonic Setting of Granitic Rocks from Northern Daocheng Batholith in West Sichuan. Earth Science, 49(6): 1966-1982. doi: 10.3799/dqkx.2022.057

    Zircon U-Pb Chronology, Geochemistry, and Their Tectonic Setting of Granitic Rocks from Northern Daocheng Batholith in West Sichuan

    doi: 10.3799/dqkx.2022.057
    • Received Date: 2022-08-15
      Available Online: 2024-07-11
    • Publish Date: 2024-06-25
    • The genesis and tectonic setting of granitoids in the northern part of Daocheng batholith in West Sichuan are still debated. In this paper, a compilation of petrology, zircon U-Pb chronology, geochemistry and Hf isotopes was conducted on the granitoid to solve this uncertainty. LA-ICP-MS zircon U-Pb dating result shows that granitoids in the northern part of the batholith were formed at 213-212 Ma, slightly later than those in the southern part. Granitoids researched are mainly composed of granodiorite and monzogranite, the former of which contains many MME (mafic microgranular enclaves). Accessory minerals contain apatite, epidote, zircon and opaque minerals. Enrichment in sodium, and large ion lithophile elements, metaluminous to weak peraluminous are typical geochemical characteristics of the representative granitic samples. Their εHf(t) values are very scattered, ranging from -16.6 to 2.4 (average -5.0), reflecting average crustal residence age (t2DM) of 2.04-1.25 Ga (average 1.4) of the granitic source. Combined with regional geological evidence, the granitoids are I-type garanites derived from partial melting of basement metabasalt from the Mesoproterozoic Kangding complex, part of metagreywacks maybe involved in the acid member. Upwelling of asthenosphere and partial melting of the middle and lower crusts triggered by slab detachment under post-orogenic extension environment are responsible for the formation of granitoids.

       

    • loading
    • Altherr, R., Holl, A., Hegner, E., et al., 2000. High-Potassium, Calc-Alkaline I-Type Plutonism in the European Variscides: Northern Vosges (France) and Northern Schwarzwald (Germany). Lithos, 50(1-3): 51-73. https://doi.org/10.1016/s0024-4937(99)00052-3
      Barbarin, B., 1999. A Review of the Relationships between Granitoid Types, Their Origins and Their Geodynamic Environments. Lithos, 46(3): 605-626. https://doi.org/10.1016/s0024-4937(98)00085-1
      Blichert-Toft, J., Albarède, F., 1997. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth and Planetary Science Letters, 148(1-2): 243-258. https://doi.org/10.1016/s0012-821x(97)00040-x
      Castro, A., Moreno-Ventas, I., de la Rosa, J. D., 1991. H-Type (Hybrid) Granitoids: A Proposed Revision of the Granite-Type Classification and Nomenclature. Earth-Science Reviews, 31(3-4): 237-253. https://doi.org/10.1016/0012-8252(91)90020-g
      Chappell, B. W., White, A. J. R., 1992. I- and S-Type Granites in the Lachlan Fold Belt. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1-2): 1-26. https://doi.org/10.1017/s0263593300007720
      Cheng, S. B., Fu, J. M., Ma, L. Y., et al., 2013. Geochemical Characteristics, Petrogenesis and Ore Potential Evaluation of Caledonian Granitoids in Nanling Range, South China. Geology and Mineral Resources of South China, 29(1): 1-11(in Chinese with English abstract).
      Corfu, F., John, M. H., Hoskin, P.W.O., et al., 2003. Atlas of Zircon Textures. In: Hanachar, J.M., Hoskin, P.W.O., eds.. Zircon. Reviews in Mineralogy and Geochemistry, 53(1): 469-500.
      Deng, J., Wang, Q. F., Li, G. J., et al., 2014. Tethys Tectonic Evolution and Its Bearing on the Distribution of Important Mineral Deposits in the Sanjiang Region, SW China. Gondwana Research, 26(2): 419-437. https://doi.org/10.1016/j.gr.2013.08.002
      Deng, J., Yang, L. Q., Wang, C. M., 2011. Research Advances of Superimposed Orogenesis and Metallogenesis in the Sanjiang Tethys. Acta Petrologica Sinica, 27(9): 2501-2509(in Chinese with English abstract).
      Gao, X., Yang, L. Q., Orovan, E. A., 2018. The Lithospheric Architecture of Two Subterranes in the Eastern Yidun Terrane, East Tethys: Insights from Hf-Nd Isotopic Mapping. Gondwana Research, 62: 127-143. https://doi.org/10.1016/j.gr.2018.02.010
      Griffin, W. L., Wang, X., Jackson, S. E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China: In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3-4): 237-269. https://doi.org/10.1016/s0024-4937(02)00082-8
      He, D. F., Zhu, W. G., Zhong, H., et al., 2013. Zircon U-Pb Geochronology and Elemental and Sr-Nd-Hf Isotopic Geochemistry of the Daocheng Granitic Pluton from the Yidun Arc, SW China. Journal of Asian Earth Sciences, 67: 1-17. https://doi.org/10.1016/j.jseaes.2013.02.002
      Hou, Z. Q., Mo, X. X., 1991. The Evolution of Yidun Island-Arc and Implications in the Exploration of Kuroko-Type Volcanogenic Massive Sulphide Deposits in Sanjiang Area, China. Earth Science, 16(2): 153-164(in Chinese with English abstract).
      Hou, Z. Q., Qu, X. M., Zhou, J. R., et al., 2001. Collision-Orogenic Processes of the Yidun Arc in the Sanjiang Region: Record of Granites. Acta Geologica Sinica, 75(4): 484-497(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2001.04.008
      Hou, Z. Q., Yang, Y. Q., Qu, X. M., et al., 2004. Tectonic Evolution and Mineralization Systems of the Yidun Arc Orogen in Sanjiang Region, China. Acta Geologica Sinica, 78(1): 109-120(in Chinese with English abstract).
      Kinny, P. D., Maas, R., 2003. Lu-Hf and Sm-Nd Isotope Systems in Zircon. Reviews in Mineralogy and Geochemistry, 53(1): 327-341. https://doi.org/10.2113/0530327
      Jiang, L. L., Xue, C. D., Li, W. C., et al., 2020. Geological and Geochemical Constraints on the Genesis of the Bengge Gold Deposit in the Yidun Terrane, SE Tibet. Journal of Asian Earth Sciences, 195: 104338. https://doi.org/10.1016/j.jseaes.2020.104338
      Leake, B. E., 1990. Granite Magmas: Their Sources, Initiation and Consequences of Emplacement. Journal of the Geological Society, 147(4): 579-589. https://doi.org/10.1144/gsjgs.147.4.0579
      Leng, C. B., Huang, Q. Y., Zhang, X. C., et al., 2014. Petrogenesis of the Late Triassic Volcanic Rocks in the Southern Yidun Arc, SW China: Constraints from the Geochronology, Geochemistry, and Sr-Nd-Pb-Hf isotopes. Lithos, 190-191, 363-382. http://doi.org/10.1016/j.lithos.2013.12.018
      Leng, C. B., Zhang, X. C., Hu, R. Z., et al., 2012. Zircon U-Pb and Molybdenite Re-Os Geochronology and Sr-Nd-Pb-Hf Isotopic Constraints on the Genesis of the Xuejiping Porphyry Copper Deposit in Zhongdian, Northwest Yunnan, China. Journal of Asian Earth Sciences, 60: 31-48. https://doi.org/10.1016/j.jseaes.2012.07.019
      Li, W. C., Yu, H. J., Gao, X., et al., 2017. Review of Mesozoic Multiple Magmatism and Porphyry Cu-Mo (W) Mineralization in the Yidun Arc, Eastern Tibet Plateau. Ore Geology Reviews, 90: 795-812. https://doi.org/10.1016/j.oregeorev.2017.03.009
      Li, W. C., Yu, H. J., Yin, G. H., 2013. Porphyry Metallogenic System of Geza Arc in the Sanjiang Region, Southwestern China. Acta Petrologica Sinica, 29(4): 1129-1144(in Chinese with English abstract).
      Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082
      Ludwig, K. R., 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, California, 39.
      Peng, T. P., Zhao, G. C., Fan, W. M., et al., 2014. Zircon Geochronology and Hf Isotopes of Mesozoic Intrusive Rocks from the Yidun Terrane, Eastern Tibetan Plateau: Petrogenesis and Their Bearings with Cu Mineralization. Journal of Asian Earth Sciences, 80: 18-33. https://doi.org/10.1016/j.jseaes.2013.10.028
      Qin, M., Yan, S. T., Wen, L., et al., 2019. The Tectonic Evolution of the Garze-Litang Ophiolite Mélange Zone in the Late Triassic: Constraints from Geochronology and Geochemistry of the Yongjie Batholith in the Garze-Litang Area. Geological Bulletin of China, 38(10): 1615-1625(in Chinese with English abstract).
      Reid, A., Wilson, C. J. L., Shun, L., et al., 2007. Mesozoic Plutons of the Yidun Arc, SW China: U-Pb Geochronology and Hf Isotopic Signature. Ore Geology Reviews, 31(1-4): 88-106. https://doi.org/10.1016/j.oregeorev.2004.11.003
      Roger, F., Jolivet, M., Malavieille, J., 2010. The Tectonic Evolution of the Songpan-Garzê (North Tibet) and Adjacent Areas from Proterozoic to Present: A Synthesis. Journal of Asian Earth Sciences, 39(4): 254-269. https://doi.org/10.1016/j.jseaes.2010.03.008
      Shi, Z. L., Zhang, H. F., Cai, H. M., 2009. Petrogenesis of Strongly Peraluminous Granites in Markan Area, Songpan Fold Belt and Its Tectonic Implication. Earth Science, 34(4): 569-584 (in Chinese with English abstract).
      Söderlund, U., Patchett, P. J., Vervoort, J. D., et al., 2004. The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions. Earth and Planetary Science Letters, 219(3-4): 311-324. https://doi.org/10.1016/s0012-821x(04)00012-3
      Wang, B. Q., Zhou, M. F., Chen, W. T., et al., 2013. Petrogenesis and Tectonic Implications of the Triassic Volcanic Rocks in the Northern Yidun Terrane, Eastern Tibet. Lithos, 175: 285-301. https://doi.org/10.1016/j.lithos.2013.05.013
      Wang, B. Q., Zhou, M. F., Li, J. W., et al., 2011. Late Triassic Porphyritic Intrusions and Associated Volcanic Rocks from the Shangri-La Region, Yidun Terrane, Eastern Tibetan Plateau: Adakitic Magmatism and Porphyry Copper Mineralization. Lithos, 127(1-2): 24-38. https://doi.org/10.1016/j.lithos.2011.07.028
      Wang, N., Wu, C. L., Qin, H. P., et al., 2016. Zircon U-Pb Geochronology and Hf Isotopic Characteristics of the Daocheng Granite and Haizishan Granite in the Yidun Arc, Western Sichuan, and Their Geological Significance. Acta Geologica Sinica, 90(11): 3227-3245(in Chinese with English abstract).
      Wang, P., Dong, G. C., Zhao, G. C., et al., 2018. Petrogenesis of the Pulang Porphyry Complex, Southwestern China: Implications for Porphyry Copper Metallogenesis and Subduction of the Paleo-Tethys Oceanic Lithosphere. Lithos, 304: 280-297. https://doi.org/10.1016/j.lithos.2018.02.009
      Wang, Q., Xu, J. F., Jian, P., et al., 2006. Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization. Journal of Petrology, 47(1): 119-144. https://doi.org/10.1093/petrology/egi070
      Weislogel, A. L., 2008. Tectonostratigraphic and Geochronologic Constraints on Evolution of the Northeast Paleotethys from the Songpan-Ganzi Complex, Central China. Tectonophysics, 451(1-4): 331-345. https://doi.org/10.1016/j.tecto.2007.11.053
      Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/bf00402202
      Wu, T., Xiao, L., Wilde, S. A., et al., 2017. A Mixed Source for the Late Triassic Garzê-Daocheng Granitic Belt and Its Implications for the Tectonic Evolution of the Yidun Arc Belt, Eastern Tibetan Plateau. Lithos, 288: 214-230. https://doi.org/10.1016/j.lithos.2017.07.002
      Wu, Y. B., Zheng, Y. F., 2004. Zircon Mineralogy and Its Restriction on Interpretion of U-Pb Age. Chinese Science Bulletin, 49(16): 1589-1604 (in Chinese).
      Yuan, C., Zhou, M. F., Sun, M., et al., 2010. Triassic Granitoids in the Eastern Songpan-Ganzi Fold Belt, SW China: Magmatic Response to Geodynamics of the Deep Lithosphere. Earth and Planetary Science Letters, 290(3-4): 481-492. https://doi.org/10.1016/j.epsl.2010.01.005
      Zhang, R. G., He, W. Y., Gao, X., et al., 2018. Magma Mixing of the Daocheng Batholith of Western Sichuan: Mineralogical Evidences. Earth Science Frontiers, 25(6): 226-239(in Chinese with English abstract).
      Zhang, H. F., Zhang, L., Harris, N., et al., 2006. U-Pb Zircon Ages, Geochemical and Isotopic Compositions of Granitoids in Songpan-Garze Fold Belt, Eastern Tibetan Plateau: Constraints on Petrogenesis and Tectonic Evolution of the Basement. Contributions to Mineralogy and Petrology, 152(1): 75-88. https://doi.org/10.1007/s00410-006-0095-2
      Zhao, J. H., Zhou, M. F., Yan, D. P., et al., 2008. Zircon Lu-Hf Isotopic Constraints on Neoproterozoic Subduction-Related Crustal Growth along the Western Margin of the Yangtze Block, South China. Precambrian Research, 163: 189-209. http://doi.org/10.1016/j.precamres.2007.11.003
      Zhu, D. C., Wang, Q., Zhan, Q. Y., et al., 2021. Late Triassic Tectono-Magmatism of Northern Sanjiang and Associated Several Scientific Problems. Sedimentary Geology and Tethyan Geology, 41(2): 232-245(in Chinese with English abstract).
      程顺波, 付建明, 马丽艳, 等, 2013. 南岭地区加里东期花岗岩地球化学特征、岩石成因及含矿性评价. 华南地质, 29(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC201301002.htm
      邓军, 杨立强, 王长明, 2011. 三江特提斯复合造山与成矿作用研究进展. 岩石学报, 27(9): 2501-2509. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201109002.htm
      侯增谦, 莫宣学, 1991. 义敦岛弧的形成演化及其对"三江"地区块状硫化物矿床的控制作用. 地球科学, 16(2): 153-164. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199102005.htm
      侯增谦, 曲晓明, 周继荣, 等, 2001. 三江地区义敦岛弧碰撞造山过程: 花岗岩记录. 地质学报, 75(4): 484-497. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200104012.htm
      侯增谦, 杨岳清, 曲晓明, 等, 2004. 三江地区义敦岛弧造山带演化和成矿系统. 地质学报, 78(1): 109-120. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200401013.htm
      李文昌, 余海军, 尹光候, 2013. 西南"三江" 格咱岛弧斑岩成矿系统. 岩石学报, 29(4): 1129-1144. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202201011.htm
      秦蒙, 严松涛, 文浪, 等, 2019. 甘孜-理塘蛇绿混杂岩带晚三叠世构造演化: 来自理塘地区勇杰岩体地球化学、年代学的制约. 地质通报, 38(10): 1615-1625. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202310006.htm
      时章亮, 张宏飞, 蔡宏明, 2009. 松潘造山带马尔康强过铝质花岗岩的成因及其构造意义. 地球科学, 34(4): 569-584. http://www.earth-science.net/article/id/1861?viewType=HTML
      王楠, 吴才来, 秦海鹏, 等, 2016. 川西义敦岛弧稻城花岗岩体和海子山花岗岩体锆石U-Pb年代学、Hf同位素特征及地质意义. 地质学报, 90(11): 3227-3245. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201611016.htm
      吴元保, 郑永飞, 2004. 锆石成因矿物学和微量元素地球化学. 科学通报, 49(16): 1589-1604.
      张瑞刚, 和文言, 高雪, 等, 2018. 川西稻城岩体岩浆混合作用: 矿物学特征的证据. 地学前缘, 25(6): 226-239. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201806021.htm
      朱弟成, 王青, 詹琼窑, 等, 2021. 三江北段晚三叠世构造-岩浆作用和几个相关的科学问题. 沉积与特提斯地质, 41(2): 232-245. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD202102011.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(3)

      Article views (465) PDF downloads(111) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return