• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Liu Bo, Wang Yiding, Wen Yunqi, Han Baofu, 2022. Geochronology and Geochemistry of Mesozoic Igneous Rocks in the Hanjiayuanzi⁃Fulin Area of the Erguna Massif: Constraints on the Tectonic Evolution of the Mongol⁃Okhotsk Ocean. Earth Science, 47(9): 3316-3333. doi: 10.3799/dqkx.2022.065
    Citation: Liu Bo, Wang Yiding, Wen Yunqi, Han Baofu, 2022. Geochronology and Geochemistry of Mesozoic Igneous Rocks in the Hanjiayuanzi⁃Fulin Area of the Erguna Massif: Constraints on the Tectonic Evolution of the Mongol⁃Okhotsk Ocean. Earth Science, 47(9): 3316-3333. doi: 10.3799/dqkx.2022.065

    Geochronology and Geochemistry of Mesozoic Igneous Rocks in the Hanjiayuanzi⁃Fulin Area of the Erguna Massif: Constraints on the Tectonic Evolution of the Mongol⁃Okhotsk Ocean

    doi: 10.3799/dqkx.2022.065
    • Received Date: 2022-02-21
    • Publish Date: 2022-09-25
    • The Hanjiayuanzi-Fulin area in the eastern Erguna Massif, located adjacent to the Mongol-Okhotsk suture zone, is characterized by numerous Early Jurassic to Early Cretaceous igneous rocks, which is important to reconstruct the subduction and closure history of the Mongol-Okhotsk Ocean. In this study, we present new petrology, LA-ICP-MS zircon U-Pb ages and whole-rock geochemical data for the Mesozoic igneous rocks from the Hanjiayuanzi-Fulin area. Zircon U-Pb ages of Hanjiayuanzi K-feldspar granite and Fulin trachyandesite are 196±2 Ma and 122±2 Ma, corresponding to the Early Jurassic and Early Cretaceous, respectively. The K-feldspar granite belongs to metaluminous Ⅰ-type granite, with low Mg# value (36) and Nb/Ta ratios (16.55-17.05) close to the primitive mantle, which could be derived from partial melting of the juvenile lower crust. It is enriched in large ion lithophile elements (LILEs, e.g., Rb, Ba, K), and depleted in high field strength elements (HFSEs, e.g., Nb, Ta, Ti), showing the geochemical characteristics of typical arc igneous rocks. Combined with the spatial distribution of contemporary metaluminous-weakly peraluminous Ⅰ-type granites, we propose that the Early Jurassic Hanjiayuanzi K-feldspar granite may be related to the southward subduction of the Mongol-Okhotsk Ocean beneath the Erguna massif. By contrast, the trachyandesite has lower SiO2 contents (59.67%-59.93%), higher Mg# values (42-43), and is also enriched in LILEs and depleted in HFSEs. Besides, it has an enrichment of Sr and depletion of Th, suggesting an origin from the enriched lithospheric mantle. Based on the regional distribution of Early Cretaceous calc-alkaline volcanic rocks, A-type granites and metamorphic core complexes, we suggest that the Early Cretaceous trachyandesite was formed in an extensional environment after the closure of the Mongol-Okhotsk Ocean. Combined with published data from igneous and sedimentary rocks, the closure time of the Mongol-Okhotsk Ocean in the northern Great Xing'an Range is suggested to be between latest Late Jurassic and earliest Early Cretaceous (~150-140 Ma).

       

    • 致谢: 感谢主编和三位匿名审稿人所提出的修改意见.感谢自然资源部东北亚矿产资源评价重点实验室郝宇杰博士在实验过程中给予的帮助.中山大学博士研究生吴宜翰参与了野外工作,论文修改过程中河北地质大学唐宗源博士给予了修改意见,在此一并感谢!
    • Chai, M. C., Wang, Q., Zhao, G. Y., et al., 2018. Zircon U-Pb Ages and Geochemical Characteristics of Late Mesozoic Volcanic Rocks from Shibazhan-Hanjiayanzi Area of Da Hinggan Mountains and Their Tectonic Significance. Geological Bulletin of China, 37(10): 1866-1881 (in Chinese with English abstract).
      Chen, C., Lü, X. B., Li, J., et al., 2020. Petrogenesis and Tectonic Setting of Intermediate-Felsic Volcanics in Ta'erqi Area, Central Great Xing'an Range. Earth Science, 45(12): 4446-4462 (in Chinese with English abstract).
      Chen, L., Liang, C. Y., Neubauer, F., et al., 2022. Sedimentary Processes and Deformation Styles of the Mesozoic Sedimentary Succession in the Northern Margin of the Mohe Basin, NE China: Constraints on the Final Closure of the Mongol-Okhotsk Ocean. Journal of Asian Earth Sciences, 232: 105052. https://doi.org/10.1016/j.jseaes.2021.105052
      Chen, Z. G., Zhang, L. C., Wan, B., et al., 2011. Geochronology and Geochemistry of the Wunugetushan Porphyry Cu-Mo Deposit in NE China, and Their Geological Significance. Ore Geology Reviews, 43(1): 92-105. https://doi.org/10.1016/j.oregeorev.2011.08.007
      Daoudene, Y., Gapais, D., Ruffet, G., et al., 2012. Syn-Thinning Pluton Emplacement during Mesozoic Extension in Eastern Mongolia. Tectonics, 31(3): TC3001. https://doi.org/10.1029/2011TC002926
      Deng, C. Z., Sun, D. Y., Ping, X. Q., et al., 2019. Geochemistry of Early Cretaceous Volcanic Rocks in the Northeastern Great Xing'an Range, Northeast China and Implication for Geodynamic Setting. International Geology Review, 61(13): 1594-1612. https://doi.org/10.1080/00206814.2018.1528481
      Ewart, A., Milner, S. C., Armstrong, R. A., et al., 1998. Etendeka Volcanism of the Goboboseb Mountains and Messum Igneous Complex, Namibia. Part Ⅰ: Geochemical Evidence of Early Cretaceous Tristan Plume Melts and the Role of Crustal Contamination in the Paraná-Etendeka CFB. Journal of Petrology, 39(2): 191-225. https://doi.org/10.1093/petrology/39.2.191
      Fan, W. M., Guo, F., Wang, Y. J., et al., 2003. Late Mesozoic Calc-Alkaline Volcanism of Post-Orogenic Extension in the Northern Da Hinggan Mountains, Northeastern China. Journal of Volcanology and Geothermal Research, 121(1-2): 115-135. https://doi.org/10.1016/S0377-0273(02)00415-8
      Feng, Z. Q., Zhang, Q. H., Liu, Y. J., et al., 2022. Reconstruction of Rodinia Supercontinent: Evidence from the Erguna Block (NE China) and Adjacent Units in the Eastern Central Asian Orogenic Belt. Precambrian Research, 368: 106467. https://doi.org/10.1016/j.precamres.2021.106467
      Fitton, J. G., James, D., Kempton, P. D., et al., 1988. The Role of Lithospheric Mantle in the Generation of Late Cenozoic Basic Magmas in the Western United States. Journal of Petrology, (Special Lithosphere Issue): 331-349. https://doi.org/10.1093/petrology/Special_Volume.1.331
      Guo, Z. X., Yang, Y. T., Zyabrev, S., et al., 2017. Tectonostratigraphic Evolution of the Mohe-Upper Amur Basin Reflects the Final Closure of the Mongol-Okhotsk Ocean in the Latest Jurassic-Earliest Cretaceous. Journal of Asian Earth Sciences, 145: 494-511. https://doi.org/10.1016/j.jseaes.2017.06.020
      Halim, N., Kravchinsky, V., Gilder, S., et al., 1998. A Palaeomagnetic Study from the Mongol-Okhotsk Region: Rotated Early Cretaceous Volcanics and Remagnetized Mesozoic Sediments. Earth and Planetary Science Letters, 159(3-4): 133-145. https://doi.org/10.1016/S0012-821X(98)00072-7
      He, G. Q., Liu, C., Deng, J. F., et al., 2020. Records of the Late Jurassic Magmatic Arc in Heihe Area, Heilongjiang Province: Discussion on the Relationship with Mongolia-Okhotsk Ocean. Earth Science, 45(7): 2524-2537 (in Chinese with English abstract).
      Huang, J. L., Zhao, D. P., 2006. High-Resolution Mantle Tomography of China and Surrounding Regions. Journal of Geophysical Research: Solid Earth, 111(B9): B09305. https://doi.org/10.1029/2005JB004066
      Irvine, T. N., Baragar, W. R. A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5): 523-548. https://doi.org/10.1139/e71-055
      Jahn, B. M., Wu, F. Y., Capdevila, R., et al., 2001. Highly Evolved Juvenile Granites with Tetrad REE Patterns: The Woduhe and Baerzhe Granites from the Great Xing'an Mountains in NE China. Lithos, 59(4): 171-198. https://doi.org/10.1016/S0024-4937(01)00066-4
      Lassiter, J. C., DePaolo, D. J., 1997. Plume/Lithosphere Interaction in the Generation of Continental and Oceanic Flood Basalts: Chemical and Isotopic Constraints. In: Mahoney, J., ed., Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism. American Geophysical Union, Washington D. C.. https://doi.org/10.1029/GM100p0335.
      Le Bas, M. J., Le Maitre, R. W., Streckeisen, A., et al., 1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology, 27(3): 745-750. https://doi.org/10.1093/petrology/27.3.745
      Li, J. Y., Qian, Y., Tekoumc, L., et al., 2021. Petrogenesis of Jurassic Granitoids on Liaodong Peninsula, Northeast China: Constraints on the Evolution of the Mongol-Okhotsk and Pacific Tectonic Regimes. Journal of Earth Science, 32(1): 127-143. https://doi.org/10.1007/s12583-020-1372-0
      Li, Y., Ding, L. L., Xu, W. L., et al., 2015. Geochronology and Geochemistry of Muscovite Granite in Sunwu Area, NE China: Implications for the Timing of Closure of the Mongol-Okhotsk Ocean. Acta Petrologica Sinica, 31(1): 56-66 (in Chinese with English abstract).
      Liu, B., Chen, J. F., Han, B. F., et al., 2021. Geochronological and Geochemical Evidence for a Late Ordovician to Silurian Arc-Back-Arc System in the Northern Great Xing'an Range, NE China. Geoscience Frontiers, 12(1): 131-145. https://doi.org/10.1016/j.gsf.2020.07.002
      Liu, Y. J., Li, W. M., Feng, Z. Q., et al., 2017. A Review of the Paleozoic Tectonics in the Eastern Part of Central Asian Orogenic Belt. Gondwana Research, 43: 123-148. https://doi.org/10.1016/j.gr.2016.03.013
      Liu, Y. J., Li, W. M., Ma, Y. F., et al., 2021. An Orocline in the Eastern Central Asian Orogenic Belt. Earth-Science Reviews, 221: 103808. https://doi.org/10.1016/j.earscirev.2021.103808
      Ludwig, K. R., 2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center, Berkeley.
      Metelkin, D. V., Vernikovsky, V. A., Kazansky, A. Y., et al., 2010. Late Mesozoic Tectonics of Central Asia Based on Paleomagnetic Evidence. Gondwana Research, 18(2-3): 400-419. https://doi.org/10.1016/j.gr.2009.12.008
      Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/BF00384745
      Qiao, M. D., Sun, J. P., Li, Y. H., et al., 2018. Chronology, Geochemistry and Geological Implication of the Mesozoic Rhyolites in Xinlin Area, Daxinganling Mountains. Geology and Resources, 27(4): 324-336 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-1947.2018.04.003
      Ringwood, A. E., 1990. Slab-Mantle Interactions: 3. Petrogenesis of Intraplate Magmas and Structure of the Upper Mantle. Chemical Geology, 82: 187-207. https://doi.org/10.1016/0009-2541(90)90081-H
      Sorokin, A. A., Kudryashov, N. M., Kotov, A. B., 2007. Age and Geochemistry of the Early Mesozoic Granitoid Massifs of the Southern Bureya Terrane of the Russian far East. Russian Journal of Pacific Geology, 1(5): 454-463. https://doi.org/10.1134/s1819714007050053
      Sui, Z. M., Ge, W. C., Wu, F. Y., et al., 2007. Zircon U-Pb Ages, Geochemistry and Its Petrogenesis of Jurassic Granites in Northeastern Part of the Da Hinggan Mts. Acta Petrologica Sinica, 23(2): 461-480 (in Chinese with English abstract).
      Sun, L. X., Ren, B. F., Zhao, F. Q., et al., 2013. Late Paleoproterozoic Magmatic Records in the Eerguna Massif: Evidences from the Zircon U-Pb Dating of Granitic Gneisses. Geological Bulletin of China, 32(S1): 341-352 (in Chinese with English abstract).
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Tang, J., Xu, W. L., Wang, F., et al., 2016. Early Mesozoic Southward Subduction History of the Mongol-Okhotsk Oceanic Plate: Evidence from Geochronology and Geochemistry of Early Mesozoic Intrusive Rocks in the Erguna Massif, NE China. Gondwana Research, 31: 218-240. https://doi.org/10.1016/j.gr.2014.12.010
      Tomurtogoo, O., Windley, B. F., Kröner, A., et al., 2005. Zircon Age and Occurrence of the Adaatsag Ophiolite and Muron Shear Zone, Central Mongolia: Constraints on the Evolution of the Mongol-Okhotsk Ocean, Suture and Orogen. Journal of the Geological Society, 162(1): 125-134. https://doi.org/10.1144/0016-764903-146
      Wang, T., Guo, L., Zhang, L., et al., 2015. Timing and Evolution of Jurassic-Cretaceous Granitoid Magmatisms in the Mongol-Okhotsk Belt and Adjacent Areas, NE Asia: Implications for Transition from Contractional Crustal Thickening to Extensional Thinning and Geodynamic Settings. Journal of Asian Earth Sciences, 97: 365-392. https://doi.org/10.1016/j.jseaes.2014.10.005
      Wang, T., Tong, Y., Xiao, W. J., et al., 2021. Rollback, Scissor-Like Closure of the Mongol-Okhotsk Ocean and Formation of an Orocline: Magmatic Migration Based on a Large Archive of Age Data. National Science Review, 9(5): nwab210. https://doi.org/10.1093/nsr/nwab210
      Wang, W. D., Yang, H. B., Liu, T., et al., 2018. Chronology, Geochemistry and Tectonic Implications of Early Cretaceous Igneous Rocks in Xinlin Zhanbeicun Area, Northern Great Hinggan Mountain. Global Geology, 37(1): 21-36 (in Chinese with English abstract). doi: 10.3969/j.issn.1004-5589.2018.01.003
      Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202
      Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. https://doi.org/10.1016/0009-2541(77)90057-2
      Wu, F. Y., Zhao, G. C., Sun, D. Y., et al., 2007. The Hulan Group: Its Role in the Evolution of the Central Asian Orogenic Belt of NE China. Journal of Asian Earth Sciences, 30(3-4): 542-556. https://doi.org/10.1016/j.jseaes.2007.01.003
      Wu, Y. H., Liu, B., Han, B. F., et al., 2019. Zircon U-Pb Geochronology and Geochemistry of Cambrian Plutons in Xinglong Area of Northern Da-Hinggan Mountains: Implications for Tectonic Evolution. Earth Science, 44(10): 3346-3360 (in Chinese with English abstract).
      Xu, L. M., Wang, D. K., Liu, Y., et al., 2018. Age and Geochemistry of the Early Cretaceous Intrusive Rocks in Southern Tahe, Northern Great Xing'an Range. Geoscience, 32(6): 1212-1226 (in Chinese with English abstract).
      Xu, W. L., Ji, W. Q., Pei, F. P., et al., 2009. Triassic Volcanism in Eastern Heilongjiang and Jilin Provinces, NE China: Chronology, Geochemistry, and Tectonic Implications. Journal of Asian Earth Sciences, 34(3): 392-402. https://doi.org/10.1016/j.jseaes.2008.07.001
      Xu, W. L., Pei, F. P., Wang, F., et al., 2013. Spatial-Temporal Relationships of Mesozoic Volcanic Rocks in NE China: Constraints on Tectonic Overprinting and Transformations between Multiple Tectonic Regimes. Journal of Asian Earth Sciences, 74: 167-193. https://doi.org/10.1016/j.jseaes.2013.04.003
      Xu, W. L., Wang, F., Pei, F. P., et al., 2013. Mesozoic Tectonic Regimes and Regional Ore-Forming Background in NE China: Constraints from Spatial and Temporal Variations of Mesozoic Volcanic Rock Associations. Acta Petrologica Sinica, 29(2): 339-353 (in Chinese with English abstract).
      Yang, Y. T., Guo, Z. X., Song, C. C., et al., 2015. A Short-Lived but Significant Mongol-Okhotsk Collisional Orogeny in Latest Jurassic-Earliest Cretaceous. Gondwana Research, 28(3): 1096-1116. https://doi.org/10.1016/j.gr.2014.09.010
      Yin, Z. G., Gong, Z. M., Zhang, Y. L., et al., 2018. Geochronology, Geochemistry and Geological Significance of the Early Cretaceous Alkali Feldspar Granites in the Yilehuli Mountain, Da Hinggan, Mountain. Geological Bulletin of China, 37(6): 1061-1074 (in Chinese with English abstract).
      Yin, Z. G., Li, M., Li, W. L., et al., 2019. The Origin and Tectonic Environment of the Early Jurassic Adakitic Granodiorite in the Dajinshan Area of the Central and Northern Da Hinggan Range. Bulletin of Mineralogy, Petrology and Geochemistry, 38(1): 69-79 (in Chinese with English abstract).
      Yu, H. C., He, Z. H., Sui, Z. M., et al., 2020. Determination and Geological Implication of the Middle Jurassic Post-Collisional Granitoids in Taerqi Area, Central Great Xing'an Range. Acta Petrologica Sinica, 36(12): 3721-3740 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.12.10
      Zhang, Y. T., Zhang, L. C., Ying, J. F., et al., 2007. Geochemistry and Source Characteristics of Early Cretaceous Volcanic Rocks in Tahe, North Da Hinggan Mountain. Acta Petrologica Sinica, 23(11): 2811-2822 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0569.2007.11.012
      Zonenshain, L. P., Kuzmin, M. L., Natapov, L. N., 1990. Geology of the USSR: A Plate Tectonic Synthesis. In: Page, B. M., ed., Geodynamics Series 21. American Geophysical Union, Washington, D. C.. https://doi.org/10.1029/GD021.
      柴明春, 王泉, 赵国英, 等, 2018. 大兴安岭十八站‒韩家园地区晚中生代火山岩年龄、地球化学特征及其构造意义. 地质通报, 37(10): 1866-1881. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201810012.htm
      陈超, 吕新彪, 李杰, 等, 2020. 大兴安岭中段塔尔气地区中酸性火山岩成因及构造背景. 地球科学, 45(12): 4446-4462. doi: 10.3799/dqkx.2020.317
      贺国奇, 刘翠, 邓晋福, 等, 2020. 黑龙江黑河地区晚侏罗世岩浆弧的火成岩记录: 与蒙古‒鄂霍茨克洋关系探讨. 地球科学, 45(7): 2524-2537. doi: 10.3799/dqkx.2020.050
      李宇, 丁磊磊, 许文良, 等, 2015. 孙吴地区中侏罗世白云母花岗岩的年代学与地球化学: 对蒙古‒鄂霍茨克洋闭合时间的限定. 岩石学报, 31(1): 56-66. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201501004.htm
      乔牡冬, 孙加鹏, 李宇菡, 等, 2018. 大兴安岭新林区中生代流纹岩年代学、地球化学特征及其地质意义. 地质与资源, 27(4): 324-336. doi: 10.3969/j.issn.1671-1947.2018.04.003
      隋振民, 葛文春, 吴福元, 等, 2007. 大兴安岭东北部侏罗纪花岗质岩石的锆石U-Pb年龄、地球化学特征及成因. 岩石学报, 23(2): 461-480. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702024.htm
      孙立新, 任邦方, 赵凤清, 等, 2013. 内蒙古额尔古纳地块古元古代末期的岩浆记录: 来自花岗片麻岩的锆石U-Pb年龄证据. 地质通报, 32(S1): 341-352. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2013Z1012.htm
      王文东, 杨华本, 刘涛, 等, 2018. 大兴安岭北段新林战备村地区早白垩世火成岩年代学、地球化学及大地构造意义. 世界地质, 37(1): 21-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ201801003.htm
      吴宜翰, 刘博, 韩宝福, 等, 2019. 大兴安岭北部兴隆地区寒武纪侵入岩锆石U-Pb年代学、地球化学及其构造意义. 地球科学, 44(10): 3346-3360. doi: 10.3799/dqkx.2019.209
      徐立明, 王大可, 刘玉, 等, 2018. 大兴安岭北段塔河南部早白垩世侵入岩年代学和地球化学. 现代地质, 32(6): 1212-1226. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201806010.htm
      许文良, 王枫, 裴福萍, 等, 2013. 中国东北中生代构造体制与区域成矿背景: 来自中生代火山岩组合时空变化的制约. 岩石学报, 29(2): 339-353. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201302002.htm
      尹志刚, 宫兆民, 张跃龙, 等, 2018. 大兴安岭伊勒呼里山早白垩世碱长花岗岩年龄、地球化学特征及其地质意义. 地质通报, 37(6): 1061-1074. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201806010.htm
      尹志刚, 李敏, 李文龙, 等, 2019. 大兴安岭中北段大金山地区早侏罗世埃达克质花岗闪长岩的成因及构造环境. 矿物岩石地球化学通报, 38(1): 69-79. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201901008.htm
      于泓超, 和钟铧, 隋振民, 等, 2020. 大兴安岭中部塔尔气中侏罗世碰撞后花岗质岩石的确定及地质意义. 岩石学报, 36(12): 3721-3740. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202012010.htm
      张玉涛, 张连昌, 英基丰, 等, 2007. 大兴安岭北段塔河地区早白垩世火山岩地球化学及源区特征. 岩石学报, 23(11): 2811-2822. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200711013.htm
    • Relative Articles

    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)  / Tables(2)

      Article views (1140) PDF downloads(64) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return