Citation: | Zeng Zhilin, Cheng Xiaoyu, Wang Hongmei, Cao Jing, Yang Ziqi, Liu Xiaoyan, Wang Yiheng, Li Lu, Su Chuntian, Huang Qibo, 2023. Niche Specificity and Potential Functions of Microbial Communities in Karst Caves as Exampled by Panlong Cave in Guilin City, Guangxi. Earth Science, 48(12): 4711-4726. doi: 10.3799/dqkx.2022.068 |
Barton, H. A., Giarrizzo, J. G., Suarez, P., et al., 2014. Microbial Diversity in a Venezuelan Orthoquartzite Cave is Dominated by the Chloroflexi (Class Ktedonobacterales) and Thaumarchaeota Group Ⅰ. 1c. Frontiers in Microbiology, 5: 615. https://doi.org/10.3389/fmicb.2014.00615
|
Bastida, F., Selevsek, N., Torres, I. F., et al., 2015. Soil Restoration with Organic Amendments: Linking Cellular Functionality and Ecosystem Processes. Scientific Reports, 5: 15550. https://doi.org/10.1038/srep15550
|
Bokulich, N. A., Thorngate, J. H., Richardson, P. M., et al., 2014. Microbial Biogeography of Wine Grapes is Conditioned by Cultivar, Vintage, and Climate. Proceedings of the National Academy of Sciences of the United States of America, 111(1): E139-E148. https://doi.org/10.1073/pnas.1317377110
|
Bradford, M. A., McCulley, R. L., Crowther, T. W., et al., 2019. Cross-Biome Patterns in Soil Microbial Respiration Predictable from Evolutionary Theory on Thermal Adaptation. Nature Ecology & Evolution, 3(2): 223-231. https://doi.org/10.1038/s31559-018-0771-4
|
Cai, Y. F., Zhou, X., Shi, L. M., et al., 2020. Atmospheric Methane Oxidizers are Dominated by Upland Soil Cluster Alpha in 20 Forest Soils of China. Microbial Ecology, 80(4): 859-871. https://doi.org/10.1007/s00248-020-01570-1
|
Caporaso, J. G., Kuczynski, J., Stombaugh, J., et al., 2010. QIIME Allows Analysis of High-Throughput Community Sequencing Data. Nature Methods, 7(5): 335-336. https://doi.org/10.1038/nmeth.f.303
|
Cheeptham, N., Sadoway, T., Rule, D., et al., 2013. Cure from the Cave: Volcanic Cave Actinomycetes and Their Potential in Drug Discovery. International Journal of Speleology, 42(1): 35-47. https://doi.org/10.5038/1827-806x.42.1.5
|
Cheng, S. B., Liu, A. S., Cui, S., et al., 2021. Mineralization Process of Permian Karst Bauxite in Western Guangxi. Earth Science, 46(8): 2697-2710(in Chinese with English abstract).
|
Cheng, X. Y., Liu, X. Y., Wang, H. M., et al., 2021a. USCγ Dominated Community Composition and Cooccurrence Network of Methanotrophs and Bacteria in Subterranean Karst Caves. Microbiology Spectrum, 9(1): e0082021. https://doi.org/10.1128/spectrum.00820-21
|
Cheng, X. Y., Yun, Y., Wang, H. M., et al., 2021b. Contrasting Bacterial Communities and Their Assembly Processes in Karst Soils under Different Land Use. Science of the Total Environment, 751: 142263. https://doi.org/10.1016/j.scitotenv.2020.142263
|
Claesson, M., O'Sullivan, Ó., Wang, Q., et al., 2009. Comparative Analysis of Pyrosequencing and a Phylogenetic Microarray for Exploring Microbial Community Structures in the Human Distal Intestine. PloS One, 4(8): e6669. https://doi.org/10.1371/journal.pone.0006669
|
Davis, M. C., Messina, M. A., Nicolosi, G., et al., 2020. Surface Runoff Alters Cave Microbial Community Structure and Function. PLoS One, 15(5): e0232742. https://doi.org/10.1371/journal.pone.0232742
|
Debora, R., Tugba, O., 2016. Carbon Dioxide Sequestration through Microbially-Induced Calcium Carbonate Precipitation Using Ureolytic Aquatic Microorganisms. Abstracts of Papers of the American Chemical Society, 251: 672-680.
|
Edgar, R. C., 2010. Search and Clustering Orders of Magnitude Faster than BLAST. Bioinformatics, 26(19): 2460-2461. https://doi.org/10.1093/bioinformatics/btq461
|
Edgar, R. C., Haas, B. J., Clemente, J. C., et al., 2011. UCHIME Improves Sensitivity and Speed of Chimera Detection. Bioinformatics, 27(16): 2194-2200. https://doi.org/10.1093/bioinformatics/btr381
|
Fang, B. Z., Salam, N., Han, M. X., et al., 2017. Insights on the Effects of Heat Pretreatment, pH, and Calcium Salts on Isolation of Rare Actinobacteria from Karstic Caves. Frontiers in Microbiology, 8: 1535. https://doi.org/10.3389/fmicb.2017.01535
|
Gulecal-Pektas, Y., 2016. Bacterial Diversity and Composition in Oylat Cave (Turkey) with Combined Sanger/Pyrosequencing Approach. Polish Journal of Microbiology, 65: 69-75. https://doi.org/10.5604/17331331.1197277
|
Han, Q., Ma, Q., Chen, Y., et al., 2020. Variation in Rhizosphere Microbial Communities and Its Association with the Symbiotic Efficiency of Rhizobia in Soybean. The ISME Journal, 14(8): 1915-1928. https://doi.org/10.1038/s31396-020-0648-9
|
He, Z. L., Gentry, T. J., Schadt, C. W., et al., 2007. GeoChip: A Comprehensive Microarray for Investigating Biogeochemical, Ecological and Environmental Processes. The ISME Journal, 1(1): 67-77. https://doi.org/10.1038/ismej.2007.2
|
Herbst, F. A., Jehmlich, N., von Bergen, M., et al., 2018. Sulfur-34S and 36S Stable Isotope Labeling of Amino Acids for Quantification (SULAQ34/36) of Proteome Analyses. Microbial Proteomics. Humana Press, New York, 163-174. https://doi.org/10.1007/978-1-4939-8695-8_12
|
Ivanova, A. A., Zhelezova, A. D., Chernov, T. I., et al., 2020. Linking Ecology and Systematics of Acidobacteria: Distinct Habitat Preferences of the Acidobacteriia and Blastocatellia in Tundra Soils. PLos One, 15(3): e0230157. https://doi.org/10.1371/journal.pone.0230157
|
Jones, D. S., Lyon, E., Macalady, J., 2008. Geomicrobiology of Biovermiculations from the Frasassi Cave System, Italy. Journal of Cave and Karst Studies, 70: 78-93.
|
Knief, C., 2015. Diversity and Habitat Preferences of Cultivated and Uncultivated Aerobic Methanotrophic Bacteria Evaluated Based on PMOA as Molecular Marker. Frontiers in Microbiology, 6: 1346. https://doi.org/10.3389/fmicb.2015.01346
|
Knief, C., Lipski, A., Dunfield, P. F., 2003. Diversity and Activity of Methanotrophic Bacteria in Different Upland Soils. Applied and Environmental Microbiology, 69(11): 6703-6714. https://doi.org/10.1128/aem.69.11.6703-6714.2003
|
Kontro, M., Lignell, U., Hirvonen, M. R., et al., 2005. pH Effects on 10 Streptomyces spp. Growth and Sporulation Depend on Nutrients. Letters in Applied Microbiology, 41(1): 32-38. https://doi.org/10.1111/j.1472-765x.2005.01727.x
|
Kraft, B., Tegetmeyer, H. E., Sharma, R., et al., 2014. The Environmental Controls That Govern the End Product of Bacterial Nitrate Respiration. Science, 345(6197): 676-679. https://doi.org/10.1126/science.1254070
|
Kranjc, A., 2011. The Origin and Evolution of the Term "Karst". Procedia—Social and Behavioral Sciences, 19: 567-570. https://doi.org/10.1016/j.sbspro.2011.05.170
|
Kuypers, M. M. M., Marchant, H. K., Kartal, B., et al., 2018. The Microbial Nitrogen-Cycling Network. Nature Reviews Microbiology, 16(5): 263-276. https://doi.org/10.1038/nrmicro.2018.9
|
Lavoie, K. H., Winter, A. S., Read, K. J. H., et al., 2017. Comparison of Bacterial Communities from Lava Cave Microbial Mats to Overlying Surface Soils from Lava Beds National Monument, USA. PLoS One, 12(2): e0169339. https://doi.org/10.1371/journal.pone.0169339
|
Lewin, G. R., Carlos, C., Chevrette, M. G., et al., 2016. Evolution and Ecology of Actinobacteria and Their Bioenergy Applications. Annual Review of Microbiology, 70: 235-254. https://doi.org/10.1146/annurev-micro-102215-095748
|
Lian, B., Xiao, L. L., Sun, Q. B., 2017. Ecological Effects of the Microbial Weathering of Silicate Minerals. Acta Geologica Sinica (English Edition), 91(Suppl. 1): 150-152. https://doi.org/10.1111/1755-6724.13231
|
Ma, L. Y., Huang, X. P., Wang, H. M., et al., 2021. Microbial Interactions Drive Distinct Taxonomic and Potential Metabolic Responses to Habitats in Karst Cave Ecosystem. Microbiology Spectrum, 9(2): e0115221. https://doi.org/10.1128/Spectrum.01152-21
|
Melillo, J. M., Frey, S. D., DeAngelis, K. M., et al., 2017. Long-Term Pattern and Magnitude of Soil Carbon Feedback to the Climate System in a Warming World. Science, 358(6359): 101-105. doi: 10.1126/science.aan2874
|
Morris, B. E. L., Henneberger, R., Huber, H., et al., 2013. Microbial Syntrophy: Interaction for the Common Good. FEMS Microbiology Reviews, 37(3): 384-406. https://doi.org/10.1111/1574-6976.12019
|
Mozafari, M., Sajjadian, M., Sorninia, Y., et al., 2020. Hydrogeology and Geomorphology of Bisetun Aquifer (NW Iran): Interesting Example of Deep Endokarst. Carbonates and Evaporites, 35(4): 1-19. https://doi.org/10.1007/s13146-020-00636-y
|
Nelson, M. B., Martiny, A. C., Martiny, J. B. H., 2016. Global Biogeography of Microbial Nitrogen-Cycling Traits in Soil. Proceedings of the National Academy of Sciences of the United States of America, 113(29): 8033-8040. https://doi.org/10.1073/pnas.1601070113
|
Ortiz, M., Legatzki, A., Neilson, J. W., et al., 2014. Making a Living While Starving in the Dark: Metagenomic Insights into the Energy Dynamics of a Carbonate Cave. The ISME Journal, 8(2): 478-491. https://doi.org/10.1038/ismej.2013.159
|
Poisot, T., Gravel, D., 2014. When is an Ecological Network Complex? Connectance Drives Degree Distribution and Emerging Network Properties. Peer Journal, 2: e251. https://doi.org/10.7717/peerj.251
|
Porter, M. L., Engel, A. S., Kane, T. C., et al., 2009. Productivity-Diversity Relationships from Chemolithoautotrophically Based Sulfidic Karst Systems. International Journal of Speleology, 38: 27-40. https://doi.org/10.5038/1827-806x.38.1.4
|
Pratscher, J., Vollmers, J., Wiegand, S., et al., 2018. Unravelling the Identity, Metabolic Potential and Global Biogeography of the Atmospheric Methane-Oxidizing Upland Soil Cluster α. Environmental Microbiology, 20(3): 1016-1029. https://doi.org/10.1111/1462-2920.14036
|
Proctor, L. M., 1997. Nitrogen-Fixing, Photosynthetic, Anaerobic Bacteria Associated with Pelagic Copepods. Aquatic Microbial Ecology, 12: 105-113. https://doi.org/10.3354/ame012105
|
Pu, G. Z., Lü, Y. N., Dong, L. N., et al., 2019. Profiling the Bacterial Diversity in a Typical Karst Tiankeng of China. Biomolecules, 9(5): 187. https://doi.org/10.3390/biom9050187
|
Puissant, J., Jones, B., Goodall, T., et al., 2019. The pH Optimum of Soil Exoenzymes Adapt to Long Term Changes in Soil pH. Soil Biology and Biochemistry, 138: 107601. https://doi.org/10.1016/j.soilbio.2019.107601
|
Radita, R., Suwanto, A., Kurosawa, N., et al., 2018. Firmicutes is the Predominant Bacteria in Tempeh. International Food Research Journal, 25(6): 2313-2320.
|
Reitschuler, C., Spötl, C., Hofmann, K., et al., 2016. Archaeal Distribution in Moonmilk Deposits from Alpine Caves and Their Ecophysiological Potential. Microbial Ecology, 71(3): 686-699. https://doi.org/10.1007/s00248-015-0727-z
|
Riquelme, C., Marshall Hathaway, J. J., de L N Enes Dapkevicius, M., et al., 2015. Actinobacterial Diversity in Volcanic Caves and Associated Geomicrobiological Interactions. Frontiers in Microbiology, 6: 1342. https://doi.org/10.3389/fmicb.2015.01342
|
Sauro, F., Mecchia, M., Tringham, M., et al., 2020. Speleogenesis of the World's Longest Cave in Hybrid Arenites (Krem Puri, Meghalaya, India). Geomorphology, 359: 107160. https://doi.org/10.1016/j.geomorph.2020.107160
|
Smit, E., Leeflang, P., Gommans, S., et al., 2001. Diversity and Seasonal Fluctuations of the Dominant Members of the Bacterial Soil Community in a Wheat Field as Determined by Cultivation and Molecular Methods. Applied and Environmental Microbiology, 67(5): 2284-2291. https://doi.org/10.1128/aem.67.5.2284-2291.2001
|
Sun, X. L., Xu, Z. H., Xie, J. Y., et al., 2022. Bacillus velezensis Stimulates Resident Rhizosphere Pseudomonas stutzeri for Plant Health through Metabolic Interactions. The ISME Journal, 16(3): 774-787. https://doi.org/10.1038/s31396-021-01125-3
|
Tang, K., Baskaran, V., Nemati, M., 2009. Bacteria of the Sulphur Cycle: An Overview of Microbiology, Biokinetics and Their Role in Petroleum and Mining Industries. Biochemical Engineering Journal, 44(1): 73-94. https://doi.org/10.1016/j.bej.2008.12.011
|
Tetu, S. G., Breakwell, K., Elbourne, L. D. H., et al., 2013. Life in the Dark: Metagenomic Evidence that a Microbial Slime Community is Driven by Inorganic Nitrogen Metabolism. The ISME Journal, 7(6): 1227-1236. https://doi.org/10.1038/ismej.2013.14
|
Veress, M. J., 2020. Karst Types and Their Karstification. Journal of Earth Science, 31(3): 621-634. https://doi.org/10.1007/s12583-020-1306-x
|
Wang, Q., Zhang, Z. H., Du, R., et al., 2019. Richness of Plant Communities Plays a Larger Role Than Climate in Determining Responses of Species Richness to Climate Change. Journal of Ecology, 107: 1944-1955. https://doi.org/10.1111/1365-2745.13148
|
Wang, W. F., Ma, Y. T., Ma, X., et al., 2012. Diversity and Seasonal Dynamics of Airborne Bacteria in the Mogao Grottoes, Dunhuang, China. Aerobiologia, 28(1): 27-38. https://doi.org/10.1007/s10453-011-9208-0
|
Wang, X. Y., He, T. H., Gen, S. Y., et al., 2020. Soil Properties and Agricultural Practices Shape Microbial Communities in Flooded and Rainfed Croplands. Applied Soil Ecology, 147: 103449. https://doi.org/10.1016/j.apsoil.2019.103449
|
Yang, S. H., Ahn, H., Kim, B. S., et al., 2017. Comparison of Bacterial Communities in Leachate from Decomposing Bovine Carcasses. Asian-Australasian Journal of Animal Sciences, 30(11): 1660-1666. https://doi.org/10.5713/ ajas.17.0553 doi: 10.5713/ajas.17.0553
|
Yang, Y., Li, T., Wang, Y. Q., et al., 2021. Linkage between Soil Ectoenzyme Stoichiometry Ratios and Microbial Diversity Following the Conversion of Cropland into Grassland. Agriculture, Ecosystems & Environment, 314: 107418. https://doi.org/10.1016/j.agee.2021.107418
|
Yun, Y. A., Wang, H. M., Man, B. Y., et al., 2016. The Relationship between pH and Bacterial Communities in a Single Karst Ecosystem and Its Implication for Soil Acidification. Frontiers in Microbiology, 7: 1955. https://doi.org/10.3389/fmicb.2016.01955
|
Yun, Y. A., Wang, W. Q., Wang, H. M., et al., 2018. Seasonal Variation of Bacterial Community and Their Functional Diversity in Drip Water from a Karst Cave. Chinese Science Bulletin, 63(36): 3932-3944. https://doi.org/10.1360/n972018-00627
|
Yun, Y. A., Xiang, X., Wang, H. M., et al., 2016. Five-Year Monitoring of Bacterial Communities in Dripping Water from the Heshang Cave in Central China: Implication for Paleoclimate Reconstruction and Ecological Functions. Geomicrobiology Journal, 33(7): 1-11. https://doi.org/10.1080/01490451.2015.1062062
|
Zelezniak, A., Andrejev, S., Ponomarova, O., et al., 2015. Metabolic Dependencies Drive Species Co-Occurrence in Diverse Microbial Communities. Proceedings of the National Academy of Sciences of the United States of America, 112(20): 6449-6454. https://doi.org/10.1073/pnas.1421834112
|
Zeng, L. L., Tian, J. Q., Chen, H., et al., 2019. Changes in Methane Oxidation Ability and Methanotrophic Community Composition across Different Climatic Zones. Journal of Soils and Sediments, 19(2): 533-543. https://doi.org/10.1007/s11368-018-2069-1
|
Zhang, Y., Yang, Q. S., Ling, J., et al., 2021. The Diversity of Alkane-Degrading Bacterial Communities in Seagrass Ecosystem of the South China Sea. Ecotoxicology, 30: 1799-1807. https://doi.org/10.1007/s10646-021-02450-1
|
Zhao, R., Wang, H. M., Cheng, X. Y., et al., 2018. Upland Soil Cluster γ Dominates the Methanotroph Communities in the Karst Heshang Cave. FEMS Microbiology Ecology, 94(12): fiy192. https://doi.org/10.1093/femsec/fiy192
|
Zhu, H. Z., Zhang, Z. F., Zhou, N., et al., 2019. Diversity, Distribution and Co-Occurrence Patterns of Bacterial Communities in a Karst Cave System. Frontiers in Microbiology, 10: 1726. https://doi.org/10.3389/fmicb.2019.01726
|
Zhu, H. Z., Zhang, Z. F., Zhou, N., et al., 2021. Bacteria and Metabolic Potential in Karst Caves Revealed by Intensive Bacterial Cultivation and Genome Assembly. Applied and Environmental Microbiology, 87(6): e02440-e02420. https://doi.org/10.1128/aem.02440-20
|
程顺波, 刘阿睢, 崔森, 等, 2021. 桂西二叠纪喀斯特型铝土矿地质成矿过程. 地球科学, 46(8): 2697-2710. doi: 10.3799/dqkx.2020.295
|