Citation: | Na Jin, Xie Kanglu, Yuan Kehan, Yuan Yilong, 2024. Effect of Stress Loading on Permeability of Granite Rough Fissure. Earth Science, 49(5): 1810-1820. doi: 10.3799/dqkx.2022.082 |
Cai, J. L., Zhou, Z. F., 2009. Review of Seepage Research in Rough Fractures. Site Investigation Science and Technology, (4): 18-23 (in Chinese with English abstract).
|
Chen, Y. F., Zhou, J. Q., Hu, S. H., et al., 2015. Evaluation of Forchheimer Equation Coefficients for Non⁃Darcy Flow in Deformable Rough⁃Walled Fractures. Journal of Hydrology, (529): 993-1006.
|
Gao, H. M., Lan, Y. W., Zhao, Y. L., et al., 2017. Study on Permeability of Granite under Conditions of Stress and Temperature. Journal of Jiamusi University (Natural Science Edition), 35(6): 955-958 (in Chinese with English abstract). doi: 10.3969/j.issn.1008-1402.2017.06.019
|
Guo, Q. H., He, T., Zhuang, Y. Q., et al., 2020. Expansion of Fracture Network in Granites via Chemical Stimulation: A Laboratory Study. Earth Science Frontiers, 27(1): 159-169 (in Chinese with English abstract).
|
He, Y. L., Yang, L. Z., 2004. Testing Study on Variational Characteristics of Rockmass Permeability under Loading⁃Unloading of Confining Pressure. Chinese Journal of Rock Mechanics and Engineering, 23(3): 415-419 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2004.03.010
|
Huang, Y. H., Lei, H. W., Bai, B., et al., 2020. Multiphysics⁃Coupling Simulation Technologies and Their Application in Safety Assessment of Geothermal Exploration. Science & Technology for Development, 16(S1): 323-331 (in Chinese with English abstract).
|
Huang, Y. Z., Wang, E. Z., 2007. Experimental Study of the Laws between the Effective Confirming Pressure and Rock Permeability. Journal of Tsinghua University (Science and Technology), 47(3): 340-343 (in Chinese with English abstract).
|
Lei, H. W., 2014. Coupled Hydrothermal Process Analysis of Thermal Energy Exploitation Mechanics in Enhanced Geothermal System (EGS). Jilin University, Changchun (in Chinese).
|
Li, J., Zhang, Y., Hu, D. W., et al., 2019. Gas Permeability of Granite in Triaxial Cyclic Loading/Unloading Tests. Rock and Soil Mechanics, 40(2): 693-700 (in Chinese with English abstract).
|
Li, L. L., Zhu, J. F., Jing, H. W., et al., 2021. Study on Evolution of Granite Permeability under Stress after High Temperature Exposure. Coal Science and Technology, 49(7): 45-50 (in Chinese with English abstract).
|
Meng, X., Liu, W., Meng, T., 2018. Experimental Investigation of Thermal Cracking and Permeability Evolution of Granite with Varying Initial Damage under High Temperature and Triaxial Compression. Advances in Materials Science & Engineering, (4): 1-9. https://doi.org/10.1155/2018/8759740
|
Meng, X. L., Meng, F. Q., Li, H. S., et al., 2020. Analysis on Non⁃Darcy Flow Characteristic for Fractured Rock. The Chinese Journal of Geological Hazard and Control, 31(4): 121-125 (in Chinese with English abstract).
|
Mi, Z. X., Wang, F. G., Shi, N., et al., 2018. Experimental Study on Effect of Multi⁃Stage Stress Variations on Permeability and Pore Structure of Sandstone. Chinese Journal of Geotechnical Engineering, 40(5): 864-871 (in Chinese with English abstract).
|
Na, J., 2016. Study on the Effect of Chemical Stimulation Technology on Enhanced Geothermal System (EGS) Thermal Reservoir Reconstruction. Jilin University, Changchun (in Chinese).
|
Nara, Y., Kato, M., Fukuda, D., et al., 2018. Permeability of Granite Including Macro⁃Fracture Naturally Filled with Fine⁃Grained Minerals. Pure & Applied Geophysics, 175(3): 917-927. https://doi.org/10.1007/s00024⁃017⁃1704⁃x
|
Pyrak⁃Nolte, L. J., Nolte, D. D., 2016. Approaching a Universal Scaling Relationship between Fracture Stiffness and Fluid Flow. Nature Communication, 7: 10663. https://doi.org/10.1038/ncomms10663
|
Selvadurai, A. P. S., 2015. Normal Stress⁃Induced Permeability Hysteresis of a Fracture in a Granite Cylinder. Geofluids, 15(1-2): 7-47. https://doi.org/10.1111/gfl.12107
|
Wang, B., Zhao, R., Li, Y. S., et al., 2021. Experimental Study on Variation Characteristics of Rock Permeability under Different Confining Pressures in Western Sichuan Plateau—Taking Balang Mountain Tunnel as an Example. Safety and Environmental Engineering, 28(3): 179-186 (in Chinese with English abstract).
|
Wang, F. G., Sun, Z. J., Liu, H. Y., et al., 2016. Experimental Study on the Variation of Permeability of Medium⁃Fine Feldspar⁃Quartz Sandstone Low⁃Permeability Reservoir under the Circulatory Increasing or Reducing Conditions of Confining Pressure. Journal of Hydraulic Engineering, 47(9): 1125-1132 (in Chinese with English abstract).
|
Wang, L. C., Cardenas, M. B., 2016. Development of an Empirical Model Relating Permeability and Specific Stiffness for Rough Fractures from Numerical Deformation Experiments. Journal of Geophysical Research⁃Solid Earth, 121(7): 4977-4989. https://doi.org/10.1002/2016JB013004
|
Wang, M. D., Guo, Q. H., Yan, W. D., et al., 2014. Medium⁃Low⁃Enthalpy Geothermal Power⁃Electricity Generation at Gonghe Basin, Qinghai Province. Earth Science, 39(9): 1317-1322 (in Chinese with English abstract).
|
Wu, Z. S., Feng, Z. J., Shi, X. D., et al., 2020. Study on Permeability of Granite under Different Confining Pressures and Its Permeability Sensitivity. Mining Research and Development, 40(10): 46-50 (in Chinese with English abstract).
|
Xin, L. W., Sun, K. M., Li, T. S., 2017. Probe to the Permeability Variation Regularity of the Fractured Core Rock under the Impact of Loading and Unloading Vibrations. Journal of Safety and Environment, 17(1): 72-75 (in Chinese with English abstract).
|
Yu, H. D., Chen, F. F., Chen, W. Z., et al., 2012. Research on Permeability of Fractured Rock. Chinese Journal of Rock Mechanics and Engineering, 31(S1): 2788-2795 (in Chinese with English abstract).
|
Zhang, F., Wang, L., Zhao, J. J., et al., 2016. Evolution of Permeability of Granite with Tensile and Compressive⁃Shear Cracks. Rock and Soil Mechanics, 37(10): 2803-2809 (in Chinese with English abstract).
|
Zhang, P. S., Hou, J. Q., Zhao, C. Y., et al., 2020a. Experimental Study on Seepage Characteristics of Red Sandstone with Different Confining Pressures and Different Damage Degrees. Chinese Journal of Rock Mechanics and Engineering, 39(12): 2405-2415 (in Chinese with English abstract).
|
Zhang, P. S., Zhao, C. Y., Hou, J. Q., et al., 2020b. Experimental Study on Seepage Characteristics of Deep Sandstone under Temperature⁃Stress⁃Seepage Coupling Conditions. Chinese Journal of Rock Mechanics and Engineering, 39(10): 1957-1974 (in Chinese with English abstract).
|
Zhang, S. Q., Li, X. F., Song, J., et al., 2021. Analysis on Geophysical Evidence for Existence of Partial Melting Layer in Crust and Regional Heat Source Mechanism for Hot Dry Rock Resources of Gonghe Basin. Earth Science, 46(4): 1416-1436 (in Chinese with English abstract).
|
蔡金龙, 周志芳, 2009. 粗糙裂隙渗流研究综述. 勘察科学技术, (4): 18-23. https://www.cnki.com.cn/Article/CJFDTOTAL-KCKX200904004.htm
|
高红梅, 兰永伟, 赵延林, 等, 2017. 花岗岩在围压和温度作用下渗透率变化规律研究. 佳木斯大学学报(自然科学版), 35(6): 955-958. https://www.cnki.com.cn/Article/CJFDTOTAL-JMDB201706019.htm
|
郭清海, 何曈, 庄亚芹, 等, 2020. 化学刺激法提高花岗岩类岩石裂隙渗透性的实验研究. 地学前缘, 27(1): 159-169. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001020.htm
|
贺玉龙, 杨立中, 2004. 围压升降过程中岩体渗透率变化特性的试验研究. 岩石力学与工程学报, 23(3): 415-419. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200403010.htm
|
黄永辉, 雷宏武, 白冰, 等, 2020. 多场耦合模拟技术及其在地热开采安全性评价中的应用. 科技促进发展, 16(S1): 323-331. https://www.cnki.com.cn/Article/CJFDTOTAL-KJCJ2020Z1014.htm
|
黄远智, 王恩志, 2007. 低渗透岩石渗透率与有效围压关系的实验研究. 清华大学学报(自然科学版), 47(3): 340-343. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200703009.htm
|
雷宏武, 2014. 增强型地热系统(EGS)中热能开发力学耦合水热过程分析(博士学位论文). 长春: 吉林大学.
|
李军, 张杨, 胡大伟, 等, 2019. 花岗岩三轴循环加卸载条件下的气体渗透率. 岩土力学, 40(2): 693-700. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902032.htm
|
李林林, 朱俊福, 靖洪文, 等, 2021. 高温处理后花岗岩应力作用下渗透特性演化研究. 煤炭科学技术, 49(7): 45-50. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202107006.htm
|
蒙学礼, 蒙发强, 李涣森, 等, 2020. 裂隙岩体非线性渗流特性分析. 中国地质灾害与防治学报, 31(4): 121-125. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202004017.htm
|
秘昭旭, 王福刚, 石娜, 等, 2018. 多期次应力变化对砂岩渗透率和孔隙结构影响的试验研究. 岩土工程学报, 40(5): 864-871. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805014.htm
|
那金, 2016. 化学刺激技术对增强型地热系统(EGS)热储层改造作用研究(博士学位论文). 长春: 吉林大学.
|
王彪, 赵瑞, 李云松, 等, 2021. 不同围压作用下川西高原地区岩石渗透率变化特性试验研究——以巴郎山隧道为例. 安全与环境工程, 28(3): 179-186. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ202103024.htm
|
王福刚, 孙兆军, 刘红艳, 等, 2016. 中-细粒长石石英砂岩低渗储层在围压循环增减条件下渗透率变化规律的试验研究. 水利学报, 47(9): 1125-1132. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201609004.htm
|
王敏黛, 郭清海, 严维德, 等, 2014. 青海共和盆地中低温地热流体发电. 地球科学, 39(9): 1317-1322. doi: 10.3799/dqkx.2014.113?viewType=HTML
|
武治盛, 冯子军, 石晓巅, 等, 2020. 不同围压下花岗岩渗透率及其渗透敏感性规律研究. 矿业研究与开发, 40(10): 46-50. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK202010009.htm
|
辛利伟, 孙可明, 李天舒, 2017. 加卸载作用下裂隙岩芯渗透性变化规律研究. 安全与环境学报, 17(1): 72-75. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201701018.htm
|
于洪丹, 陈飞飞, 陈卫忠, 等, 2012. 含裂隙岩石渗流力学特性研究. 岩石力学与工程学报, 31(S1): 2788-2795. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S1024.htm
|
张帆, 王亮, 赵建建, 等, 2016. 花岗岩张拉和压剪裂隙渗透率演化研究. 岩土力学, 37(10): 2803-2809. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201610009.htm
|
张培森, 侯季群, 赵成业, 等, 2020a. 不同围压不同损伤程度红砂岩渗流特性试验研究. 岩石力学与工程学报, 39(12): 2405-2415. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202012003.htm
|
张培森, 赵成业, 侯季群, 等, 2020b. 温度-应力-渗流耦合条件下红砂岩渗流特性试验研究. 岩石力学与工程学报, 39(10): 1957-1974. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202010002.htm
|
张森琦, 李旭峰, 宋健, 等, 2021. 共和盆地壳内部分熔融层存在的地球物理证据与干热岩资源区域性热源分析. 地球科学, 46(4): 1416-1436. doi: 10.3799/dqkx.2020.094?viewType=HTML
|