• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 3
    Mar.  2023
    Turn off MathJax
    Article Contents
    Zhang Mengzhao, Guo Qinghai, Liu Mingliang, Liu Qiang, 2023. Geochemical Characteristics and Formation Mechanisms of the Geothermal Waters in the Xinzhou Basin, Shanxi Province. Earth Science, 48(3): 973-987. doi: 10.3799/dqkx.2022.087
    Citation: Zhang Mengzhao, Guo Qinghai, Liu Mingliang, Liu Qiang, 2023. Geochemical Characteristics and Formation Mechanisms of the Geothermal Waters in the Xinzhou Basin, Shanxi Province. Earth Science, 48(3): 973-987. doi: 10.3799/dqkx.2022.087

    Geochemical Characteristics and Formation Mechanisms of the Geothermal Waters in the Xinzhou Basin, Shanxi Province

    doi: 10.3799/dqkx.2022.087
    • Received Date: 2021-07-19
      Available Online: 2023-03-27
    • Publish Date: 2023-03-25
    • Studies on geothermal water geochemistry are of great significance for understanding the genesis of various hydrothermal resources. By taking the Xinzhou basin in Shanxi Province as a study area, this paper aims to identify the geochemical origin of the Xinzhou geothermal waters, to evaluate the mixing process between the geothermal waters and the shallow cold groundwaters, and to reveal the geological genesis of the Xinzhou geothermal system based on a systematic geochemical study conducted there. The formation of the Xinzhou geothermal system should have nothing to do with a shallow magma chamber or excessive decay heat of radioactive elements in shallow rocks. Instead, it occurred as a result of the deep groundwater circulation in a normal heat flow background. The atmospheric precipitation in the western Yunzhongshan recharge area infiltrated into the deep underground and migrated to the Xinzhou basin with circulation depths between 1 618.3 and 3 451.5 m. Correspondingly, the reservoir temperatures ranged from 48.4 to 91.8 ℃. The geothermal waters were mixed substantially with the shallow groundwaters when ascending to the Quaternary aquifers, the highest mixing ratio being up to 78 %.

       

    • loading
    • Ármannsson, H., 2016. The Fluid Geochemistry of Icelandic High Temperature Geothermal Areas. Applied Geochemistry, 66: 14-64. https://doi.org/10.1016/j.apgeochem.2015.10.008
      Arnórsson, S., Gunnlaugsson, E., Svavarsson, H., 1983. The Chemistry of Geothermal Waters in Iceland. Ⅲ. Chemical Geothermometry in Geothermal Investigations. Geochimica et Cosmochimica Acta, 47: 567-577. https://doi.org/10.1016/0016-7037(83)90278-8
      Bai, D. H., Liao, Z. J., Zhao, G. Z., et al., 1994. Inferred Magma Heat Source from MT Detection Results in Tengchong Rehai Hot Field. Chinese Science Bulletin, 39(4): 344-347 (in Chinese). doi: 10.1360/csb1994-39-4-344
      Chen, M. X., 1988. Geothermics in North China. Science Press, Beijing (in Chinese).
      Clark, I. D., 1998. Environmental Isotopes in Hydrogeology: Boca. Lewis Publishers, Boca Raton.
      Dai, W., Jiang, X. W., Luo, Y. F., et al., 2021. Identification and Quantification of Factors Controlling Hydrogen and Oxygen Isotopes of Geothermal Water: an Example from the Guide Basin, Qinghai Province. Earth Science Frontiers, 28(1): 420-427 (in Chinese with English abstract).
      Deng, A. L., Sun, H. P., 2002. Discussion on Hydraulic Loading and Effluent Effect in Wastewater Infiltration land Treating Systems. Earth Science, 27(2): 134, 208 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2002.02.024
      Guo, Q. H., 2012. Hydrogeochemistry of High-Temperature Geothermal Systems in China: A Review. Applied Geochemistry, 27(10): 1887-1898. https://doi.org/10.1016/j.apgeochem.2012.07.006
      Guo, Q. H., 2020. Magma-Heated Geothermal Systems and Hydrogeochemical Evidence of Their Occurrence. Acta Geologica Sinica, 94(12): 3544-3554 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2020.12.002
      Guo, Q. H., Liu, M. L., Li, J. X., et al., 2014. Acid Hot Springs Discharged from the Rehai Hydrothermal System of the Tengchong Volcanic Area (China): Formed via Magmatic Fluid Absorption or Geothermal Steam Heating? Bulletin of Volcanology, 76(10): 1-12. https://doi.org/10.1007/s00445-014-0868-9
      Guo, Q. H., Wang, Y. X., 2012. Geochemistry of Hot Springs in the Tengchong Hydrothermal Areas, Southwestern China. Journal of Volcanology and Geothermal Research, 215-216: 61-73. https://doi.org/10.1016/j.jvolgeores.2011.12.003
      Han, D. M., 2007. Analysis of Groundwater Flow System and Modeling of Hydrogeochemical Evolution in Xinzhou Basin, China (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Han, D. M., Liang, R., Currell, R. J., et al., 2010a. Environmental Isotopic and Hydrochemical Characteristics of Groundwater Systems in Daying and Qicun Geothermal Fields, Xinzhou Basin, Shanxi, China. Hydrological Processes, 24(22): 3157-3176. https://doi.org/10.1002/hyp.7742
      Han, D. M., Liang, X., Jin, M. G., et al., 2010b. Evaluation of Groundwater Hydrochemical Characteristics and Mixing Behavior in the Daying and Qicun Geothermal Systems, Xinzhou Basin. Journal of Volcanology and Geothermal Research, 189(1-2): 92-104. https://doi.org/10.1016/j.jvolgeores.2009.10.011
      Huang, W. X., 2005. Conceptual Model of Qicun Geothermal Field in Xinzhou, Shanxi Province. Huabei Natural Resources, (6): 15-18 (in Chinese).
      Huang, W. X., Yang, Q. M., 2003. Discussion on Geothermal Resources in Shanxi Province. Shanxi Energy and Energy Conservation, (1): 46-47, 49 (in Chinese).
      Jia, Z. X., Zang, H. F., Zheng, X. Q., et al., 2015. Research on Characteristics of Hydrogen and Oxygen Isotopes of Precipitation in Taiyuan Area. Journal of Water Resources and Water Engineering, 26(2): 22-25 (in Chinese with English abstract).
      Kong, Y. L., Pang, Z. H., Shao, H. B., et al., 2014. Recent Studies on Hydrothermal Systems in China: A Review. Geothermal Energy, 2(1): 1-12. https://doi.org/10.1186/s40517-014-0019-8
      Li, Q. L., 1996. Some Characteristics of the Geothermal Distribution in Shanxi Rift Zone. Earthquake Research in Shanxi, (1): 26-30 (in Chinese with English abstract).
      Li, Y. G., Lin, W. J., Xing, L. X., et al., 2021. Estimation of Deep Geothermal Reservoir Temperature in Qabqa Area, Qinghai Province. Geology and Resources, 30(4): 479-484, 511 (in Chinese with English abstract).
      Liu, M. L., He, T., Wu, Q. F., et al., 2020. Hydrogeochemistry of Geothermal Waters from Xiongan New Area and Its. Earth Science, 45(6): 2221-2231 (in Chinese with English abstract).
      Lu, L. H., Pang, Z. H., Kong, Y. L., et al., 2018. Geochemical and Isotopic Evidence on the Recharge and Circulation of Geothermal Water in the Tangshan Geothermal System near Nanjing, China: Implications for Sustainable Development. Hydrogeology Journal, 26(5): 1705-1719. https://doi.org/10.1007/s10040-018-1721-6
      Ni, S. B., Man, F. S., Wang, Z. R., et al., 1999. Characteristics of Heat Production Distribution in Northern Xinjiang. Journal of University of Science and Technology of China, 29(4): 408-414 (in Chinese with English abstract).
      Rollinson, H., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Scientific and Technical, London.
      Rybach, L., 1976. Radioactive Heat Production in Rocks and Its Relation to other Petrophysical Parameters. Pure and Applied Geophysics, 114(2): 309-317. https://doi.org/10.1007/BF00878955
      Shangguan, Z. G., Bai, C. H., Sun, M. L., 2000. Mantle-Derived Magmatic Gas Releasing Features at the Rehai Area, Tengchong County, Yunnan Province, China. Science in China (Series D), 30(4): 407-414 (in Chinese).
      Shangguan, Z. G., Sun, M. L., Li, H. Z., 1999. Active Types of Modern Geothermal Fluids at the Tengchong Region, Yunnan Province. Seismology and Geology, 21(4): 436-442 (in Chinese with English abstract). doi: 10.3969/j.issn.0253-4967.1999.04.020
      Wang, D. C., Zhang, R. Q., Shi, Y. H., et al., 1995. General Hydrogeology. Geological Publishing House, Beijing (in Chinese).
      Wang, J. X., 2014. Evaluation on Geothermal Resource of Xinzhou Qicun (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Xiao, J. H., Zhang, R. F., 2005. Characteristics of Hydrogeochemistry of Geothermal Field of Qi Village, Shanxi, and Earthquake Monitoring. Earthquake Research in Shanxi, (1): 12-14 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6265.2005.01.005
      Yuan, J. F., 2013. Hydrogeochemistry of the Geothermal Systems in Coastal Areas of Guangdong Province, South China (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Zhang, P., 2017. Hydrochemical Characteristics and Water Rock Interaction of Arxan Springs (Dissertation). China University of Geosciences, Bejing (in Chinese with English abstract).
      Zhang, S. M., Ren, J. J., Luo, M. H., et al., 2008. Stepwise Landforms and Quaternary Episodic Uplifts of Mountains around Xinding Basin. Seismology and Geology, 30(1): 187-201 (in Chinese with English abstract). doi: 10.3969/j.issn.0253-4967.2008.01.013
      Zhang, W., Wang, G. L., Liu, F., et al., 2019. Characteristics of Geothermal Resources in Sedimentary Basins. Geology in China, 46(2): 255-268 (in Chinese with English abstract).
      Zhu, X., Wang, G. L., Ma, F., et al., 2021. Hydrogeochemistry of Geothermal Waters from Taihang Mountain-Xiongan New Area and Its Indicating Significance. Earth Science, 46(7): 2594-2608 (in Chinese with English abstract).
      白登海, 廖志杰, 赵国泽, 等, 1994. 从MT探测结果推论腾冲热海热田的岩浆热源. 科学通报, 39(4): 344-347. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199404017.htm
      陈墨香, 1988. 华北地热. 北京: 科学出版社.
      戴蔓, 蒋小伟, 罗银飞, 等, 2021. 地热水氢氧同位素控制因素识别与定量计算: 以青海贵德盆地为例. 地学前缘, 28(1): 420-427. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202101040.htm
      邓安利, 孙和平, 2002. 山西省奇村地热田超采引起的热水动态变化. 地球科学, 27(2): 134, 208. doi: 10.3321/j.issn:1000-2383.2002.02.024
      郭清海, 2020. 岩浆热源型地热系统及其水文地球化学判据. 地质学报, 94(12): 3544-3554. doi: 10.3969/j.issn.0001-5717.2020.12.002
      韩冬梅, 2007. 忻州盆地第四系地下水流动系统分析与水化学场演化模拟(博士学位论文). 武汉: 中国地质大学.
      黄卫星, 2005. 山西忻州奇村地热田的概念模型. 华北国土资源, (6): 15-18. https://www.cnki.com.cn/Article/CJFDTOTAL-HBGT200506004.htm
      黄卫星, 杨亲民, 2003. 山西省地热资源探讨. 山西能源与节能, (1): 46-47, 49. https://www.cnki.com.cn/Article/CJFDTOTAL-SXJL200301020.htm
      贾振兴, 臧红飞, 郑秀清, 等, 2015. 太原地区大气降雨的氢氧同位素特征研究. 水资源与水工程学报, 26(2): 22-25. https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ201502005.htm
      李清林, 1996. 山西断陷带地热分布的某些特征. 山西地震, (1): 26-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SXDZ601.006.htm
      李永革, 蔺文静, 邢林啸, 等, 2021. 青海省恰卜恰地区深部热储温度估算. 地质与资源, 30(4): 479-484, 511. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD202104010.htm
      刘明亮, 何曈, 吴启帆, 等, 2020. 雄安新区地热水化学特征及其指示意义. 地球科学, 45(6): 2221-2231. doi: 10.3799/dqkx.2019.270
      倪守斌, 满发胜, 王兆荣, 等, 1999. 新疆北部地区岩石生热率分布特征. 中国科学技术大学学报, 29(4): 408-414. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJD199904004.htm
      上官志冠, 白春华, 孙明良, 2000. 腾冲热海地区现代幔源岩浆气体释放特征. 中国科学(D辑), 30(4): 407-414. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200004009.htm
      上官志冠, 孙明良, 李恒忠, 1999. 云南腾冲地区现代地热流体活动类型. 地震地质, 21(4): 436-442. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ199904019.htm
      王大纯, 张人权, 史毅红, 等, 1995. 水文地质学基础. 北京: 地质出版社.
      王俊鑫, 2014. 忻州市奇村地热资源评价(硕士学位论文). 北京: 中国地质大学.
      肖建华, 张瑞丰, 2005. 山西奇村地热田水文地球化学特征与地震监测. 山西地震, (1): 12-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SXDZ200501005.htm
      袁建飞, 2013. 广东沿海地热系统水文地球化学研究(博士学位论文). 武汉: 中国地质大学.
      张鹏, 2017. 阿尔山泉群水化学特征与水岩作用研究(硕士学位论文). 北京: 中国地质大学.
      张世民, 任俊杰, 罗明辉, 等, 2008. 忻定盆地周缘山地的层状地貌与第四纪阶段性隆升. 地震地质, 30(1): 187-201. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200801013.htm
      张薇, 王贵玲, 刘峰, 等, 2019. 中国沉积盆地型地热资源特征. 中国地质, 46(2): 255-268. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201902005.htm
      朱喜, 王贵玲, 马峰, 等, 2021. 太行山-雄安新区蓟县系含水层水文地球化学特征及意义. 地球科学, 46(7): 2594-2608. doi: 10.3799/dqkx.2020.207
    • dqkxzx-48-3-973-附表.docx
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)  / Tables(5)

      Article views (1133) PDF downloads(144) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return