• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 5
    May  2022
    Turn off MathJax
    Article Contents
    Cui Wei, Xiao Jiaqi, 2022. Numerical Simulation for Data Analyses of First Gas Hydrate Trial Production Test in Shenhu Area. Earth Science, 47(5): 1890-1900. doi: 10.3799/dqkx.2022.089
    Citation: Cui Wei, Xiao Jiaqi, 2022. Numerical Simulation for Data Analyses of First Gas Hydrate Trial Production Test in Shenhu Area. Earth Science, 47(5): 1890-1900. doi: 10.3799/dqkx.2022.089

    Numerical Simulation for Data Analyses of First Gas Hydrate Trial Production Test in Shenhu Area

    doi: 10.3799/dqkx.2022.089
    • Received Date: 2021-11-06
    • Publish Date: 2022-05-25
    • After the first successful trial production in the Shenhu area of the South China Sea in 2017, many scholars have used numerical methods to simulate this process, but the simulation results have always been deviated from the data of actual trial production. In order to explore the reasons for the deviation, a mathematical model is established for depressurization discovery in a two-dimensional cylindrical coordinate system, and a corresponding program is developed in this study, to simulate not only the non-uniform distribution of reservoir parameters such as permeability and so on, but also the impact of dynamic parameter such as the wellbore pressure on the production process. Making full use of the flexibility of the autonomous program, the reasons for the deviation are obtained through numerical experiment analysis: (1) The muddy silt-type reservoir has water sensitivity, and the fresh water produced by the decomposition of hydrate causes clay swelling, which makes the permeability decrease; (2) The production well pressure must be taken as the dynamic input parameter. Based on this, the permeability model was revised, and the time-varying pressure in production well was dynamically input. The simulated gas production obtained is very close to the trial production data, making the numerical simulation of depressurization closer to the actual situation.

       

    • loading
    • Ahmadi, G., Ji, C., Smith, D. H., 2007. Natural Gas Production from Hydrate Dissociation: An Axisymmetric Model. Journal of Petroleum Science and Engineering, 58(1): 245-258. https://doi.org/10.1016/j.petrol.2007.01.001
      Clarke, M. A., Bishnoi, P. R., 2004. Determination of the Intrinsic Rate Constant and Activation Energy of CO2 Gas Hydrate Decomposition Using In-Situ Particle Size Analysis. Chemical Engineering Science, 59(14): 2983-2993. https://doi.org/10.1016/j.ces.2004.04.030
      Cui, Y., Lu, C., Wu, M., et al., 2018. Review of Exploration and Production Technology of Natural Gas Hydrate. Advances in Geo-Energy Research, 2(1): 53-62. https://doi.org/10.26804/ager.2018.01.05
      Genuchten, V. T. M., 1980. A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 44(5): 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x
      He, Y. L., Liang, J.Q., Shi, W.Z., et al., 2022. Influence Factors and Accumulation Modes of Gas Hydrate in the South Low Uplift and Its Surrounding Area of Qiongdongnan Basin. Earth Science, 47(5): 1711-1727 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2021.207
      Kim, H. C., Bishnoi, P. R., Heidemann, R. A., et al., 1987. Kinetics of Methane Hydrate Decomposition. Chemical Engineering Science, 42(7): 1645-1653. https://doi.org/10.1016/0009-2509(87)80169-0
      Kvenvolden, K. A., 1999. Colloquium Paper: Potential Effects of Gas Hydrate on Human Welfare. Proc. Natl. Acad. Sci. USA, 96: 3420-3426. doi: 10.1073/pnas.96.7.3420
      Li, B., Xu, T. F., Zhang, G. B., et al., 2018a. An Experimental Study on Gas Production from Fracture-Filled Hydrate by CO2 and CO2/N2 Replacement. Energy Conversion and Management, 165: 738-747. https://doi.org/10.1016/j.enconman.2018.03.095
      Li, J. F., Ye, J. L., Qin, X. W., et al., 2018b. The First Offshore Natural Gas Hydrate Production Test in South China Sea. China Geology, 1(1): 5-16. https://doi.org/10.31035/cg2018003
      Li, S.X., Liu, J.L., Wu, D.D., et al., 2018. Numerical Study of Hydrate Depressurization Dissociation in Shenhu Area. Science Technology and Engineering, 18(24): 38-43 (in Chinese with English abstract).
      Li, S.X., Yu, X., Li, S., et al., 2020. Prediction of Gas Production of Shenhu Hydrate Reservoir by Depressurization and Its Stimulation Treatment. China Offshore Oil and Gas, 32(6): 122-127 (in Chinese with English abstract).
      Masuda, Y., 2002. A Field-Scale Simulation Study on Gas Productivity of Formations Containing Gas Hydrates. International Conference on Gas Hydrates, Vancouver.
      Moridis, G. J., Kowalsky, M. B., Pruess, K., 2007. Depressurization-Induced Gas Production from Class-1 Hydrate Deposits. SPE Reservoir Evaluation & Engineering, 10(5): 458-481. https://doi.org/10.2118/97266-PA
      Qi, Y. X., Wu, W. D., Liu, Y. F., et al., 2012. The Influence of NaCl Ions on Hydrate Structure and Thermodynamic Equilibrium Conditions of Gas Hydrates. Fluid Phase Equilibria, 325: 6-10. https://doi.org/10.1016/j.fluid.2012.04.009
      Sloan, E. D. J., 1998. Clathrate Hydrates of Natural Gases, Second Edition, Revised and Expanded. CRC Press, London.
      Sun, Y. H., Ma, X. L., Guo, W., et al., 2019. Numerical Simulation of the Short- and Long-Term Production Behavior of the First Offshore Gas Hydrate Production Test in the South China Sea. Journal of Petroleum Science and Engineering, 181: 106196. https://doi.org/10.1016/j.petrol.2019.106196
      Wang, B., Dong, H., Liu, Y., et al., 2017. Evaluation of Thermal Stimulation on Gas Production from Depressurized Methane Hydrate Deposits. Applied Energy: S0306261917310206. https://doi.org/10.1016/j.apenergy.2017.08.005
      Wang, W.B., Cui, W., Xiao, J.Q., 2019. Influence of Permeability on Low Pressure Transmission in Gas Hydrate Depressurization. Energy Conservation, 38(12): 96-101 (in Chinese with English abstract)
      Wang, W.B., Liu, X., Cui, W., et al., 2021. Numerical Simulation on Depressurization Production of Natural Gas Hydrate. Chinese Journal of Geophysics, 64(6): 2097-2107 (in Chinese with English abstract)
      Wang, X.J., Jin, J.P., Guo, Y.Q., et al., 2021. The Characteristics of Gas Hydrate Accumulation and Quantitative Estimation in the North Slope of South China Sea. Earth Science, 46(3): 1038-1057 (in Chinese with English abstract).
      Yamamoto, K., Wang, X. X., Tamaki, M., et al., 2019. The Second Offshore Production of Methane Hydrate in the Nankai trough and Gas Production Behavior from a Heterogeneous Methane Hydrate Reservoir. RSC Advances, 9(45): 25987-26013. https://doi.org/10.1039/C9RA00755E
      Ye, J.L., Qin, X.W., Xie, W.W., et al., 2020. Main Progress of the Second Gas Hydrate Trial Production in the South China Sea. Geology in China, 47(3): 557-568 (in Chinese with English abstract).
      Yu, T., Guan, G. Q., Abudula, A., et al., 2019.3D Visualization of Fluid Flow Behaviors during Methane Hydrate Extraction by Hot Water Injection. Energy, 188(C): 116110. https://doi.org/10.1016/j.energy.2019.116110
      Yu, T., Guan, G. Q., Wang, D., et al., 2021. Numerical Investigation on the Long-Term Gas Production Behavior at the 2017 Shenhu Methane Hydrate Production Site. Applied Energy, 285: 116466. https://doi.org/10.1016/j.apenergy.2021.116466
      Zhang, J., Sun, Q., Wang, Z., et al., 2021. Prediction of Hydrate Formation and Plugging in the Trial Production Pipes of Offshore Natural Gas Hydrates. Journal of Cleaner Production, 316(4): 128262. https://doi.org/10.1016/j.jclepro.2021.128262
      Zhang, L. X., Yang, L., Wang, J. Q., et al., 2017. Enhanced CH4 Recovery and CO2 Storage via Thermal Stimulation in the CH4/CO2 Replacement of Methane Hydrate. Chemical Engineering Journal, 308: 40-49. https://doi.org/10.1016/j.cej.2016.09.047
      Zhang, R., Zang, S.B., Ren, X.J., 2012. Low Permeability Reservoir Water Sensitivity Damage Factor Analysis. Inner Mongolia Petrochemical Industry, 38(21): 15-17 (in Chinese with English abstract).
      李淑霞, 刘佳丽, 武迪迪, 等, 2018. 神狐海域水合物藏降压开采的数值模拟. 科学技术与工程, 18(24): 38-43. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201824006.htm
      李淑霞, 于笑, 李爽, 等, 2020. 神狐水合物藏降压开采产气量预测及增产措施研究. 中国海上油气, 32(6): 122-127. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202006015.htm
      何玉林, 梁金强, 石万忠, 等, 2022. 琼东南盆地南部低凸起及其周缘区天然气水合物富集影响因素和成藏模式. 地球科学, 45(5): 1711-1727. doi: 10.3799/dqkx.2021.207
      王文博, 崔伟, 肖加奇, 2019. 天然气水合物降压开采中渗透率对低压传递的影响. 节能, 38(12): 96-101 https://www.cnki.com.cn/Article/CJFDTOTAL-JNJN201912033.htm
      王文博, 刘晓, 崔伟, 等, 2021. 天然气水合物降压开采数值模拟研究. 地球物理学报, 64(6): 2097-2107. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202106019.htm
      王秀娟, 靳佳澎, 郭依群, 等, 2021. 南海北部天然气水合物富集特征及定量评价. 地球科学, 46(3): 1038-1057. doi: 10.3799/dqkx.2020.321
      叶建良, 秦绪文, 谢文卫, 等, 2020. 中国南海天然气水合物第二次试采主要进展. 中国地质, 47(3): 557-568. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202003002.htm
      张蕊, 臧士宾, 任晓娟, 2012. 低渗储层岩石水敏性损害因素分析. 内蒙古石油化工, 38(21): 15-17. https://www.cnki.com.cn/Article/CJFDTOTAL-NMSH201221008.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)  / Tables(2)

      Article views (875) PDF downloads(60) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return