• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 5
    May  2022
    Turn off MathJax
    Article Contents
    Chen Zigui, Jiang Tao, Kuang Zenggui, Cheng Cong, Xiong Pengfei, Chen Yue, 2022. Accumulation Characteristics of Gas Hydrate-Shallow Gas Symbiotic System in Qiongdongnan Basin. Earth Science, 47(5): 1619-1634. doi: 10.3799/dqkx.2022.094
    Citation: Chen Zigui, Jiang Tao, Kuang Zenggui, Cheng Cong, Xiong Pengfei, Chen Yue, 2022. Accumulation Characteristics of Gas Hydrate-Shallow Gas Symbiotic System in Qiongdongnan Basin. Earth Science, 47(5): 1619-1634. doi: 10.3799/dqkx.2022.094

    Accumulation Characteristics of Gas Hydrate-Shallow Gas Symbiotic System in Qiongdongnan Basin

    doi: 10.3799/dqkx.2022.094
    • Received Date: 2021-12-01
    • Publish Date: 2022-05-25
    • Following the successful production test of natural gas hydrate in the Shenhu area in China, the exploration in the Qiongdongnan basin in recent years has confirmed the existence of natural gas hydrate, which shows a complex symbiotic relationship with shallow gas by the drilling. In order to reveal the accumulation characteristics of gas hydrate-shallow gas symbiotic system in the deep water area of the Qiongdongnan basin, combining core photos, logging data, and three-dimensional seismic data, the spatial distribution characteristics of gas hydrate and shallow gas is expounded in the study area.The research results show that gas hydrate mainly exists in sandy sediments above -200 m below the seafloor, and its formation process is related to the vertical migration of shallow gas. The deep analysis of the accumulation characteristics of gas hydrate and shallow gas symbiotic system shows that deep thermogenic gas and shallow biogenic gas are the vital gas source. The unconsolidated sand layer in the Quaternary strata is a high-quality reservoir. The distribution of gas hydrate and shallow gas symbiotic system is mainly affected by deep gas chimneys and faults. Shallow gas has been providing stable gas source for gas hydrate. The mass transport deposits and gas hydrate-bearing sediments developed in the Quaternary strata can effectively block the vertical migration of natural gas and further promote the accumulation of shallow gas. Therefore, there are positive feedback interactions between the formation of gas hydrate and the development of shallow gas, which are conducive to the formation of larger gas hydrate ore bodies and shallow gas reservoirs, and have good commercial development potential.

       

    • loading
    • Cheng, C., Jiang, T., Kuang, Z., et al., 2020. Characteristics of Gas Chimneys and Their Implications on Gas Hydrate Accumulation in the Shenhu Area, Northern South China Sea. Journal of Natural Gas Science and Engineering, 84: 103629. https://doi.org/10.1016/j.jngse.2020.103629
      Cheng, C., Jiang, T., Kuang, Z. G., et al., 2019. Characteristics of Gas Hydrate System and Its Enlightenment to Gas Hydrate Exploration in China. Geological Science and Technology Information, 38(4): 30-40 (in Chinese with English abstract).
      Choi, J., Kim, J. H., Torres, M. E., et al., 2013. Gas Origin and Migration in the Ulleung Basin, East Sea: Results from the Second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2). Marine and Petroleum Geology, 47: 113-124. https://doi.org/10.1016/j.marpetgeo.2013.05.022
      Du, H., Shi, W. Z., Liang, J. Q., et al., 2021. Genesis of Mass Transport Deposits and Their Effect on Gas Hydrate Accumulation in the Qiongdongnan Basin. Oil Geophysical Prospecting, 56(4): 869-881, 676 (in Chinese with English abstract).
      Fang, Y. X., Wei, J. G., Lu, H. L., et al., 2019. Chemical and Structural Characteristics of Gas Hydrates from the Haima Cold Seeps in the Qiongdongnan Basin of the South China Sea. Journal of Asian Earth Sciences, 182(C): 103924. https://doi.org/10.1016/j.jseaes.2019.103924
      Gan, J., Zhang, Y. Z., Liang, G., et al., 2019. Deposition Pattern and Differential Thermal Evolution of Source Rocks, Deep Water Area of Qiongdongnan Basin. Earth Science, 44(8): 2627-2635 (in Chinese with English abstract).
      Haines, S. S., Hart, P. E., Collett, T. S., et al., 2017. High-Resolution Seismic Characterization of the Gas and Gas Hydrate System at Green Canyon 955, Gulf of Mexico, USA. Marine and Petroleum Geology, 82: 220-237. https://doi.org/10.1016/j.marpetgeo.2017.01.029
      Haq, B. U., Hardenbol, J. A. N., Vail, P. R., 1987. Chronology of Fluctuating Sea Levels since the Triassic. Science, 235: 1156. https://doi.org/10.1126/science.235.4793.1156
      He, J. X., Ning, Z. J., Zhao, B., et al., 2022. Preliminary Analysis and Prediction of the Strategic Replacement Area for Gas Hydrate Exploration in the South China Sea. Earth Science, 47(5): 1549-1568 (in Chinese with English abstract).
      He, J. X., Yan, W., Zhu, Y. H., et al., 2013. Bio-Genetic and Sub-Biogenetic Gas Resource Potential and Genetic Types of Natural Gas Hydrates in the Northern Marginal Basins of South China Sea. Natural Gas Industry, 33(6): 121-134 (in Chinese with English abstract).
      He, Y. L., Liang, J. Q., Shi, W. Z., et al, 2022. Influencing Factors and Accumulation Modes of Gas Hydrate in the South Low Uplift and Its Surrounding Area of Qiongdongnan Basin. Earth Science, 47(5): 1711-1727 (in Chinese with English abstract).
      Huang, H. T., Huang, B. J., Huang, Y. W., et al., 2017. Condensate Origin and Hydrocarbon Accumulation Mechanism of the Deepwater Giant Gas Field in Western South China Sea: A Case Study of Lingshui 17-2 Gas Field in Qiongdongnan Basin. Petroleum Exploration and Development Online, 44(3): 409-417. https://doi.org/10.1016/S1876-3804(17)30047-2
      Hui, G., Li, S., Guo, L., et al., 2016. Source and Accumulation of Gas Hydrate in the Northern Margin of the South China Sea. Marine and Petroleum Geology, 69: 127-145. https://doi.org/10.1016/j.marpetgeo.2015.10.009
      Jiang, D. C., Liu, R., Zhao, X. M., et al., 2021. Dynamic Migration of Gas Hydrate Stability Zone in the Deep Water Areas of the Qiongdongnan Basin since Pliocene and Its Distribution Pattern. Marine Geology Frontiers, 37(7): 43-51 (in Chinese with English abstract).
      Kvenvolden, K. A., 1993. Gas Hydrates—Geological Perspective and Global Change. Reviews of Geophysics, 31(2): 173-187. https://doi.org/10.1029/93RG00268
      Lai, H., Fang, Y., Kuang, Z., et al., 2021. Geochemistry, Origin and Accumulation of Natural Gas Hydrates in the Qiongdongnan Basin, South China Sea: Implications from Site GMGS5-W08. Marine and Petroleum Geology, 123: 104774. https://doi.org/10.1016/j.marpetgeo.2020.104774
      Lei, X. H., Lin, G. C., Miao, Y. S., et al., 2013. Accumulation Coexistence Models of Natural Gas Hydrate and Conventional Hydrocarbon: An approach. Marine Origin Petroleum Geology, 18(1): 47-52 (in Chinese with English abstract).
      Li, N., Yang, X. Q., Peng, J., et al., 2017. Paleo-Cold Seep Activity in the Southern South China Sea: Evidence from the Geochemical and Geophysical Records of Sediments. Journal of Asian Earth Sciences, 168: 106-111. https://doi.org/10.1016/j.jseaes.2017.10.022
      Liang, J. Q., Zhang, W., Lu, J., et al., 2019. Geological Occurrence and Accumulation Mechanism of Natural Gas Hydrates in the Eastern Qiongdongnan Basin of the South China Sea: Insights from Site GMGS5-W9-2018. Marine Geology, 418(C): 106042. https://doi.org/10.1016/j.margeo.2019.106042
      Mao, K. N., Xie, X. N., Xie, Y. H., et al., 2015. Post-Rift Tectonic Reactivation and Its Effect on Deep-Water Deposits in the Qiongdongnan Basin, Northwestern South China Sea. Marine Geophysical Research, 36(2-3): 227-242. https://doi.org/10.1007/s11001-015-9248-x
      Meng, M., Liang, J., Lu, J. A., et al., 2021. Quaternary Deep-Water Sedimentary Characteristics and Their Relationship with the Gas Hydrate Accumulations in the Qiongdongnan Basin, Northwest South China Sea. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 177: 103628. https://doi.org/10.1016/j.dsr.2021.103628
      Müller, S., Reinhardt, L., Franke, D., et al., 2018. Shallow Gas Accumulations in the German North Sea. Marine and Petroleum Geology, 91: 139-151. https://doi.org/10.1016/j.marpetgeo.2017.12.016
      Nanda, J., Shukla, K. M., Lall, M. V., et al., 2019. Lithofacies Characterization of Gas Hydrate Prospects Discovered during the National Gas Hydrate Program Expedition 02, Offshore Krishna-Godavari Basin, India. Marine and Petroleum Geology, 108: 226-238. https://doi.org/10.1016/j.marpetgeo.2019.03.032
      Popescu, I., Lericolais, G., Panin, N., et al., 2007. Seismic Expression of Gas and Gas Hydrates across the Western Black Sea. Geo-Marine Letters, 27(2/3/4): 173-183. https://doi.org/10.1007/s00367-007-0068-0
      Qin, Q., 2017. The Geophysical Identification, Origin and Migration Patterns of Shallow Gas in the Baiyun Sag, Northern South China Sea (Dissertation). Institute of Oceanology, Chinese Academy of Sciences, Qingdao (in Chinese with English abstract).
      Ren, J. Y., Zhang, D. J., Tong, D. J., et al., 2014. Characterising the Nature, Evolution and Origin of Detachment Fault in Central Depression Belt, Qiongdongnan Basin of South China Sea: Evidence from Seismic Reflection Data. Acta Oceanologica Sinica, 33(12): 118-126. https://doi.org/10.1007/s13131-014-0581-8
      Thiagarajan, N., Kitchen, N., Xie, H., et al., 2020. Identifying Thermogenic and Microbial Methane in Deep Water Gulf of Mexico Reservoirs. Geochimica et Cosmochimica Acta, 275(Prepublish): 188-208. https://doi.org/10.1016/j.gca.2020.02.016
      Wan, Z. F., Xia, B., He, J. X., et al., 2007. The Comparative Study of Hydrocarbon Accumulation Conditions in Yinggehai and Qiongdongnan Basins, Northern South China Sea. Natural Gas Geoscience, 18(5): 648-652 (in Chinese with English abstract).
      Wang, X., Wu, S., Yuan, S., et al., 2010. Geophysical Signatures Associated with Fluid Flow and Gas Hydrate Occurrence in a Tectonically Quiescent Sequence, Qiongdongnan Basin, South China Sea. Geofluids, 10(3): 351-368. https://doi.org/10.1111/j.1468-8123.2010.00292.x
      Wang, Z. F., Jiang, T., Zhang, D. J., et al., 2015. Evolution of Deepwater Sedimentary Environments and Its Implication for Hydrocarbon Exploration in Qiongdongnan Basin, Northwestern South China Sea. Acta Oceanologica Sinica, 34(4): 1-10. https://doi.org/10.1007/s13131-015-0645-4
      Wang, Z. F., Sun, Z. P., Zhang, D. J., et al., 2015. Geology and Hydrocarbon Accumulations in the Deepwater of the Northwestern South China Sea-With Focus on Natural Gas. Acta Oceanologica Sinica, 34(10): 57-70. https://doi.org/10.1007/s13131-015-0715-7
      Wei, J., Liang, J., Lu, J., et al., 2019. Characteristics and Dynamics of Gas Hydrate Systems in the Northwestern South China Sea-Results of the Fifth Gas Hydrate Drilling Expedition. Marine and Petroleum Geology, 110: 287-298. https://doi.org/10.1016/j.marpetgeo.2019.07.028
      Xie, Y. H., Zhang, G. C., Sun, Z. P., et al., 2019. Reservoir Forming Conditions and Key Exploration Technologies of Lingshui 17-2 Giant Gas Field in Deepwater Area of Qiongdongnan Basin. Petroleum Research, 4(1): 1-18. https://doi.org/10.1016/j.ptlrs.2019.01.004
      Xing, J. H., Spiess, V., 2015. Shallow Gas Transport and Reservoirs in the Vicinity of Deeply Rooted Mud Volcanoes in the Central Black Sea. Marine Geology, 369: 67-78. https://doi.org/10.1016/j.margeo.2015.08.005
      Yan, C. Z., Shi, H. S., Li, Y. P., et al., 2018. Identification and Accumulation Control Factors of Natural Gas Hydrate and Shallow Gas in Baiyun Sag, Pearl River Mouth Basin. China Offshore Oil and Gas, 30(6): 25-32 (in Chinese with English abstract).
      Yao, Z., Zhang, J. F., Zhu, J. T., et al., 2021. Analysis of the Gas Hydrate Migration and Accumulation Model in the Deep Water Areas of Qiongdongnan Basin. Marine Geology Frontiers, 37(7): 22-32 (in Chinese with English abstract).
      Ye, J., Wei, J., Liang, J., et al., 2019. Complex Gas Hydrate System in a Gas Chimney, South China Sea. Marine and Petroleum Geology, 104: 29-39. https://doi.org/10.1016/j.marpetgeo.2019.03.023
      Yuan, H., Wang, Y., Wang, X., 2021. Seismic Methods for Exploration and Exploitation of Gas Hydrate. Journal of Earth Science, 32(4): 839-849. https://doi.org/10.1007/s12583-021-1502-3
      Zhang, W., Liang, J., Su, P., et al., 2019a. Distribution and Characteristics of Mud Diapirs, Gas Chimneys, and Bottom Simulating Reflectors Associated with Hydrocarbon Migration and Gas Hydrate Accumulation in the Qiongdongnan Basin, Northern Slope of the South China Sea. Geological Journal, 54(6): 3556-3573. https://doi.org/10.1002/gj.3351
      Zhang, W., Liang, J., Wei, J., et al., 2019b. Origin of Natural Gases and Associated Gas Hydrates in the Shenhu Area, Northern South China Sea: Results from the China Gas Hydrate Drilling Expeditions. Journal of Asian Earth Sciences, 183. https://doi.org/10.1016/j.jseaes.2019.103953
      Zhang, Y. Z., Gan, J., Xu, X. D., et al., 2019. The Source and Natural Gas Lateral Migration Accumulation Model of Y8-1 Gas Bearing Structure, East Deep Water in the Qiongdongnan Basin. Earth Science, 44(8): 2609-2618 (in Chinese with English abstract).
      Zhao, Z., Sun, Z., Sun, L., et al., 2016. Cenozoic Tectonic Subsidence in the Qiongdongnan Basin, Northern South China Sea. Basin Res., 269-288. https://doi.org/10.1111/bre.12220
      程聪, 姜涛, 匡增桂, 等, 2019. 天然气水合物系统特征及其对我国水合物勘查的启示. 地质科技情报, 38(4): 30-40. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904005.htm
      杜浩, 石万忠, 梁金强, 等, 2021. 琼东南盆地块体搬运沉积体系成因及其对水合物成藏的影响. 石油地球物理勘探, 56(4): 869-881, 676. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ202104021.htm
      甘军, 张迎朝, 梁刚, 等, 2019. 琼东南盆地深水区烃源岩沉积模式及差异热演化. 地球科学, 44(8): 2627-2635. doi: 10.3799/dqkx.2019.202
      何家雄, 宁子杰, 赵斌, 等, 2022. 南海天然气水合物资源勘查战略接替区初步分析与预测. 地球科学, 47(5): 1549-1568.
      何家雄, 颜文, 祝有海, 等, 2013. 南海北部边缘盆地生物气/亚生物气资源与天然气水合物成矿成藏. 天然气工业, 33(6): 121-134. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201306028.htm
      何玉林, 梁金强, 石万忠, 等, 2022. 琼东南盆地南部低凸起及其周缘区天然气水合物富集影响因素和成藏模式. 地球科学, 47(5): 1711-1727.
      江定川, 刘睿, 赵晓明, 等, 2021. 琼东南盆地深水区上新世以来天然气水合物稳定域时空迁移及其分布特征. 海洋地质前沿, 37(7): 43-51. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT202107005.htm
      雷新华, 林功成, 苗永胜, 等, 2013. 天然气水合物与传统油气资源共生成藏模式初探. 海相油气地质, 18(1): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ201301009.htm
      秦芹, 2017. 南海北部白云凹陷浅层气的地球物理识别、成因和运移模式的研究(硕士学位论文). 青岛: 中国科学院大学(中国科学院海洋研究所).
      万志峰, 夏斌, 何家雄, 等, 2007. 南海北部莺歌海盆地与琼东南盆地油气成藏条件比较研究. 天然气地球科学, 18(5): 648-652. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200705004.htm
      颜承志, 施和生, 李元平, 等, 2018. 珠江口盆地白云凹陷天然气水合物与浅层气识别及成藏控制因素. 中国海上油气, 30(6): 25-32. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201806003.htm
      姚哲, 张金锋, 朱继田, 等, 2021. 琼东南盆地深水区天然气水合物运聚成藏模式. 海洋地质前沿, 37(7): 22-32. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT202107003.htm
      张迎朝, 甘军, 徐新德, 等, 2019. 琼东南盆地深水东区Y8-1含气构造天然气来源及侧向运聚模式. 地球科学, 44(8): 2609-2618. doi: 10.3799/dqkx.2019.159
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)

      Article views (1678) PDF downloads(184) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return